3.已知函數(shù)f(x)=x2-ax,(a>0),$g(x)=sinxsin({x+\frac{π}{6}})-\frac{{\sqrt{3}}}{4}$,命題p:an=f(n)是遞增數(shù)列,命題q:g(x)在(a,π)上有且僅有2條對稱軸.
①求g(x)的周期和單調(diào)遞增區(qū)間;
②若p∧q為真,求a的取值范圍.

分析 ①通過恒等變換整理g(x)的表達式,求出周期和單調(diào)區(qū)間即可;②分別求出p,q為真時的a的范圍,取交集即可.

解答 解:①g(x)=sinx(sinxcos$\frac{π}{6}$+cosxsin$\frac{π}{6}$)-$\frac{\sqrt{3}}{4}$
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$sinxcosx-$\frac{\sqrt{3}}{4}$
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{4}$cos2x
=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),
∴T=π,由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,
∴g(x)的單調(diào)遞增區(qū)間[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈z,
②p∧q為真∴p,q為真,
p:an+1-an=(n+1)2-a(n+1)-n2+an=2n+1-a>0恒成立,
∴0<a<3,
q:g(x)的對稱軸方程$2x-\frac{π}{3}=kπ+\frac{π}{2}⇒x=\frac{1}{2}kπ+\frac{5}{12}π$,
g(x)在(a,π)上有2條對稱軸,
畫數(shù)軸可得$a∈[{-\frac{π}{12},\frac{5π}{12}})$,
∴$a∈({0,\frac{5π}{12}})$.

點評 本題考查了三角函數(shù)問題,考查函數(shù)恒成立問題,考查復(fù)合命題的判斷,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.雙曲線${y^2}-\frac{x^2}{2}=1$的焦距是2$\sqrt{3}$,漸近線方程是$y=±\frac{\sqrt{2}}{2}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\frac{1+tanα}{1-tanα}=\frac{4}{3}$,則$tan(α+\frac{π}{4})$=$\frac{4}{3}$,tanα=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\overrightarrow{a}=(1,x)$和$\overrightarrow=(x+2,-2)$,若$\overrightarrow{a}⊥\overrightarrow$,則|$\overrightarrow{a}+\overrightarrow$|=(  )
A.5B.8C.$\sqrt{10}$D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點A(1,2),B(4,3),向量$\overrightarrow{AC}=({-2,-2})$,則向量$\overrightarrow{BC}$=( 。
A.(-5,-3)B.(5,3)C.(1,-1)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)滿足?x∈R,f(x)=f(2-x)且f(x)在區(qū)間[1,+∞)上單調(diào)遞增,則滿足$f(2x)<f(\frac{1}{3})$的x的取值范圍是(  )
A.$(\frac{1}{5},\frac{5}{6})$B.$[\frac{1}{5},\frac{5}{6})$C.$(\frac{1}{6},\frac{5}{6})$D.$[\frac{1}{6},\frac{5}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中為偶函數(shù)的是(  )
A.y=$\frac{1}{x}$B.y=lg|x|C.y=(x-1)2D.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“x=0”是“sinx=-x”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在三棱錐ABCD中,點M,N分別是△ABC和△ACD的重心,求證:MN∥BD.

查看答案和解析>>

同步練習(xí)冊答案