12.“x=0”是“sinx=-x”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義判斷即可.

解答 解:x=0時:sinx=sin0=0,是充分條件,
而由sinx=-x,即函數(shù)y=sinx和y=-x,
在同一坐標系內(nèi)畫出函數(shù)y=sinx與y=-x的草圖,
由圖得交點(0,0)
推出x=0,是必要條件,
故選:C.

點評 本題考查了充分必要條件,考查函數(shù)的交點問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,⊙O是△ABC的外接圓,C是優(yōu)弧AB上一點,設∠OAB=α,∠C=β.
(1)當α=36°時,求β的度數(shù);
(2)猜想α與β之間的關系,并給予證明.
(3)若點C平分優(yōu)弧AB,且BC2=3OA2,試求α的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-ax,(a>0),$g(x)=sinxsin({x+\frac{π}{6}})-\frac{{\sqrt{3}}}{4}$,命題p:an=f(n)是遞增數(shù)列,命題q:g(x)在(a,π)上有且僅有2條對稱軸.
①求g(x)的周期和單調(diào)遞增區(qū)間;
②若p∧q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,角A,B,C的對邊分別為a,b,c.若c=4,sinC=2sinA,sinB=$\frac{\sqrt{15}}{4}$,則a=2,S△ABC=$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)f(x)=x2-2ax+a+2,若f(x)在[0,a]上取得最大值3,最小值2,則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四邊形ABCD中,AB=8,BC=3,CD=5,∠A=$\frac{π}{3}$,cos∠ADB=$\frac{1}{7}$.
(Ⅰ)求BD的長;
(Ⅱ)求△BCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知各頂點都在同一個球面上的正四棱錐高為3,底面邊長為$\sqrt{6}$,則這個球的表面積是16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設函數(shù)f(x)在x=0處可導,且f(0)=0,函數(shù)g(x)=$\left\{\begin{array}{l}{\frac{f(x)}{x},x≠0}\\{a,x=0}\end{array}\right.$,試確定a的值,使g(x)在x=0處連續(xù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如果棱長為2$\sqrt{2}$的正四面體的頂點都在一個球面上,那么這個球的表面積是( 。
A.B.12πC.16πD.20π

查看答案和解析>>

同步練習冊答案