定義函數(shù)f(x)={x.{x}},其中{x}表示不小于x的最小整數(shù),如{1.4)=2,{-2.3}=-2.當(dāng)x∈(0,n](n∈N*)時,函數(shù)f(x)的值域為An,記集合An中元素的個數(shù)為an,則
lim
n→∞
1
a1
+
1
a2
+…+
1
an
)=
 
考點:極限及其運算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù){x}的定義、f(x)={x•{x}},依次求出數(shù)列{an}的前5項,再歸納出an=an-1+n,利用累加法求出an,再利用裂項相消法求出
1
a1
+
1
a2
+…+
1
an
的值.進而能求出
lim
n→∞
1
a1
+
1
a2
+…+
1
an
).
解答: 解:由題意易知:當(dāng)n=1時,因為x∈(0,1],所以{x}=1,所以{x{x}}=1,所以A1={1},a1=1;
當(dāng)n=2時,因為x∈(1,2],所以{x}=2,所以{x{x}}∈(2,4],所以A2={1,3,4},a2=3;
當(dāng)n=3時,因為x∈(2,3],所以{x}=3,所以{x{x}}={3x}∈(6,9],
所以A3={1,3,4,7,8,9},a3=6;
當(dāng)n=4時,因為x∈(3,4],所以{x}=4,所以{x{x}}={4x}∈(12,16],
所以A4={1,3,4,7,8,9,13,14,15,16},a4=10;
當(dāng)n=5時,因為x∈(4,5],所以{x}=5,所以{x{x}}={5x}∈(20,25],
所以A5={1,3,4,7,8,9,13,14,15,16,21,22,23,24,25},a5=15,
由此類推:an=an-1+n,所以an-an-1=n,
即a2-a1=2,a3-a2=3,a4-a3=4,…,an-an-1=n,
以上n-1個式子相加得,an-a1=
(n-1)(n+2)
2
,
解得an=
n(n+1)
2
,所以
1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
),
1
a1
+
1
a2
+…+
1
an
=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=
2n
n+1
,
lim
n→∞
1
a1
+
1
a2
+…+
1
an

=
lim
n→∞
2n
n+1

=2.
故答案為:2.
點評:本題考查的知識點是分段函數(shù),集合元素的個數(shù),基本不等式在求函數(shù)最值時的應(yīng)用,其中正確理解函數(shù)f(x)=[x[x]],所表示的意義是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求使函數(shù)y=1-
1
2
cos
π
3
x
(x∈R)取得最大值、最小值的自變量x的集合,并分別寫出最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=2y上的點M到其焦點F的距離|MF|=
5
2
,則點M的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-
a
b
ex+
a-1
b
的圖象在x=0處的切線l與圓C:x2+y2=1相交,則點P(a,b)與圓C的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)字0,1,2,3,4能組成沒有重復(fù)數(shù)字且比20000大的五位數(shù)奇數(shù)共有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,cosx),
b
=(2,-3),且
a
b
,則tanx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,且4x2+y2+2x+y=6,則2x+y最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的可導(dǎo)函數(shù)f(x)滿足:f(x)+xf′(x)>0,則不等式f(x)>(x-1)f(x2-x)的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)=
f(x+1)  (x<2)
(
1
2
)x   (x≥2)
,求f(log23)的值.

查看答案和解析>>

同步練習(xí)冊答案