分析 設(shè)A(x1,y1),B(x2,y2),把直線方程y=kx+m代入橢圓方程,得(2k2+1)x2+4kmx+2m2-8=0,利用△=16k2m2-4×(2k2+1)(2m2-8)=64k2-8m2+32>0,結(jié)合韋達定理、向量知識,即可求出實數(shù)m的取值范圍.
解答 解:設(shè)A(x1,y1),B(x2,y2),
把直線方程y=kx+m代入橢圓方程,消去y,得
(2k2+1)x2+4kmx+2m2-8=0,
∴x1+x2=-$\frac{4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-8}{1+2{k}^{2}}$,
∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=$\frac{{m}^{2}-8{k}^{2}}{1+2{k}^{2}}$,
∵$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,∴x1x2+y1y2=0,
∴$\frac{2{m}^{2}-8}{1+2{k}^{2}}$+$\frac{{m}^{2}-8{k}^{2}}{1+2{k}^{2}}$=0,
∴k2=$\frac{3{m}^{2}-8}{8}$,
∵△=16k2m2-4×(2k2+1)(2m2-8)=64k2-8m2+32>0,
∴24m2-8m2-32>0,
可得m2>2,又k2≥0,即有m2≥$\frac{8}{3}$,
∴k,m的條件為k∈R,且m≥$\frac{2\sqrt{6}}{3}$或m≤-$\frac{2\sqrt{6}}{3}$.
點評 本題考查橢圓方程和簡單幾何性質(zhì),直線與橢圓的位置關(guān)系等基礎(chǔ)知識.考查運算求解能力,推理論證能力,化歸與轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 相交 | B. | 相切 | C. | 相離 | D. | 以上都有可能 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ②③ | B. | ①② | C. | ①③④ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com