【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計(jì)圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是  

A. 利潤最高的月份是2月份,且2月份的利潤為40萬元

B. 利潤最低的月份是5月份,且5月份的利潤為10萬元

C. 收入最少的月份的利潤也最少

D. 收入最少的月份的支出也最少

【答案】D

【解析】

利用收入與支出單位:萬元情況的條形統(tǒng)計(jì)圖直接求解.

A中,利潤最高的月份是3月份,且2月份的利潤為15萬元,故A錯(cuò)誤;

B中,利潤最小的月份是8月份,且8月分的利潤為5萬元,故B錯(cuò)誤;

C中,收入最少的月份是5月份,但5月份的支出也最少,故5月分的利潤不是最少,故C錯(cuò)誤;

D中,收入最少的月份是5月份,但5月份的支出也最少,故D正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,且拋物線上有一點(diǎn)到焦點(diǎn)的距離為3 ,直線 與拋物線 交于 , 兩點(diǎn), 為坐標(biāo)原點(diǎn)。

(1)求拋物線的方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線Cy2=4x焦點(diǎn)為F,直線lC交于A,B兩點(diǎn).

(1)若l過F且斜率為1,求|AB|;

(2)若不過坐標(biāo)原點(diǎn)O,且OAOB,證明:直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓過點(diǎn)A(2,1),離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓相交于B,C兩點(diǎn)(異于點(diǎn)A),線段BCy軸平分,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】環(huán)保部門研究發(fā)現(xiàn)某地的PM10濃度與車流量之間有線性相關(guān)關(guān)系現(xiàn)采集到該地一周內(nèi)車流量xPM10濃度y的數(shù)據(jù)如表:

時(shí)間

車流量單位:萬輛

PM10濃度單位:

星期一

星期二

星期三

星期四

星期五

星期六

星期日

在如圖所示的坐標(biāo)系中作出表中數(shù)據(jù)的散點(diǎn)圖;

根據(jù)表中統(tǒng)計(jì)數(shù)據(jù),求出線性回歸方程計(jì)算b時(shí)精確到,計(jì)算a時(shí)精確到

為凈化空氣,該地決定下周起在工作日星期一至星期五限號假設(shè)限號時(shí)每個(gè)工作日的車流量為表中對應(yīng)工作日的,試預(yù)測下周星期三的PM10濃度精確到

參考公式:,

參考數(shù)據(jù),,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均不相等的等差數(shù)列的前五項(xiàng)和,且成等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)若為數(shù)列的前項(xiàng)和,且存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國20181月至12月石油進(jìn)口量統(tǒng)計(jì)圖(其中同比是今年第個(gè)月與去年第個(gè)月之比),則下列說法錯(cuò)誤的是(

A.2018年下半年我國原油進(jìn)口總量高于2018年上半年

B.201812個(gè)月中我國原油月最高進(jìn)口量比月最低進(jìn)口量高1152萬噸

C.2018年我國原油進(jìn)口總量高于2017年我國原油進(jìn)口總量

D.20181—5月各月與2017年同期相比較,我國原油進(jìn)口量有增有減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)積極發(fā)展電商,通過近些年工作的開展在新農(nóng)村建設(shè)和扶貧過程中起到了非常重要的作用,促進(jìn)了農(nóng)民生活富裕,為了更好地了解本地區(qū)某一特色產(chǎn)品的宣傳費(fèi) (千元)對銷量 (千件)的影響,統(tǒng)計(jì)了近六年的數(shù)據(jù)如下:

(1)若近6年的宣傳費(fèi)與銷量呈線性分布,由前5年數(shù)據(jù)求線性回歸直線方程,并寫出的預(yù)測值;

(2)若利潤與宣傳費(fèi)的比值不低于20的年份稱為“吉祥年”,在這6個(gè)年份中任意選2個(gè)年份,求這2個(gè)年份均為“吉祥年”的概率

附:回歸方程的斜率與截距的最小二乘法估計(jì)分別為,

,其中, , 的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,,,軸上兩個(gè)動(dòng)點(diǎn),點(diǎn)在直線上,且滿足.

(1)求點(diǎn)的軌跡方程;

(2)記點(diǎn)的軌跡為曲線,為曲線正半軸的交點(diǎn),為曲線上與不重合的兩點(diǎn),且直線與直線的斜率之積為,求證直線經(jīng)過一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊答案