分析 根據(jù)平面向量基本定理求出m,n關(guān)系,利用基本不等式的性質(zhì)進(jìn)行求解即可.
解答 解:∵$\overrightarrow{AC}$=3$\overrightarrow{AE}$,∴$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$=m$\overrightarrow{AB}$+4n$\overrightarrow{AE}$,
又∵P為BE上一點(diǎn),不妨設(shè)$\overrightarrow{BP}=λ\overrightarrow{BE}$(0<λ<1),
∴$\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{BP}$=$\overrightarrow{AB}$+λ$\overrightarrow{BE}$=$\overrightarrow{AB}$+λ($\overrightarrow{AE}-\overrightarrow{AB}$)=(1-λ)$\overrightarrow{AB}$+λ$\overrightarrow{AE}$,
∴m$\overrightarrow{AB}$+3n$\overrightarrow{AE}$=(1-λ)$\overrightarrow{AB}$+λ$\overrightarrow{AE}$,
∵$\overrightarrow{AB}$,$\overrightarrow{AE}$不共線,
∴$\left\{\begin{array}{l}{m=1-λ}\\{3n=λ}\end{array}\right.$,則m+3n=1-λ+λ=1,
∴$\frac{m+n+mn}{mn}$=$\frac{m+n}{mn}$+1=$\frac{1}{m}$$+\frac{1}{n}$+1=($\frac{1}{m}+\frac{1}{n}$)×(m+3n)+1
=5+$\frac{3n}{m}$+$\frac{m}{n}$≥5+2$\sqrt{\frac{3n}{m}•\frac{m}{n}}$=5+2$\sqrt{3}$,(m>0,n>0).
當(dāng)且僅當(dāng)$\frac{3n}{m}$=$\frac{m}{n}$即m=$\sqrt{3}$n時(shí)等號(hào)成立,
即$\frac{m+n+mn}{mn}$的最小值為5+2$\sqrt{3}$,
故答案為:5+2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查平面向量基本定理和基本不等式求最值,難點(diǎn)在于利用向量求m,n的關(guān)系和求m+3n=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{\sqrt{7}}{2}$ | C. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 銳角三角形 | B. | 鈍角三角形 | ||
C. | 直角三角形 | D. | 上述三種情況都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com