分析 (1)由三角函數(shù)公式化簡可得f(x)=$\frac{1}{2}$cos(2x-θ),由三角函數(shù)的最值可得;
(2)由(1)知f(x)=$\frac{1}{2}$cos(2x-$\frac{2π}{3}$),可得g(x)=2f($\frac{3}{2}$x)=cos(3x-$\frac{2π}{3}$),由0≤x≤$\frac{π}{3}$和三角函數(shù)的最值可得.
解答 解:(1)由三角函數(shù)公式化簡可得:
f(x)=cosx(cosxcosθ+sinxsinθ)-$\frac{1}{2}$cosθ
=cos2xcosθ+sinxcosxsinθ-$\frac{1}{2}$cosθ
=$\frac{1+cos2x}{2}$cosθ+$\frac{1}{2}$sin2xsinθ-$\frac{1}{2}$cosθ
=$\frac{1}{2}$cos2xcosθ+$\frac{1}{2}$sin2xsinθ
=$\frac{1}{2}$cos(2x-θ)
由[f(x)]max=f($\frac{π}{3}$)=$\frac{1}{2}$可得cos($\frac{2π}{3}$-θ)=1
又∵θ∈(0,π),∴θ=$\frac{2π}{3}$;
(2)由(1)知f(x)=$\frac{1}{2}$cos(2x-$\frac{2π}{3}$),
∴g(x)=2f($\frac{3}{2}$x)=cos(3x-$\frac{2π}{3}$)
∵0≤x≤$\frac{π}{3}$,所以-$\frac{2π}{3}$≤3x-$\frac{2π}{3}$≤$\frac{π}{3}$,
∴當(dāng)3x-$\frac{2π}{3}$=0,即x=$\frac{2π}{9}$時(shí),[g(x)]max=1
點(diǎn)評 本題考查三角函數(shù)的最值,涉及和差角的三角函數(shù)公式,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 對于任意x∈R,f(x)<0 | B. | 對于任意x∈R,f(x)>0 | ||
C. | 當(dāng)且僅當(dāng)x∈(-∞,1),f(x)<0 | D. | 當(dāng)且僅當(dāng)x∈(1,+∞),f(x)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,0) | B. | $({\frac{1}{2},1}]$ | C. | $[{-2,0})∪({\frac{1}{2},1}]$ | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com