6.設扇形的周長為8,面積為4,則扇形的圓心角是(弧度)( 。
A.1B.2C.4D.1或2

分析 設扇形的半徑為r,圓心角為θ.由于扇形的周長為8,面積為4,可得$\left\{\begin{array}{l}{2r+θr=8}\\{\frac{1}{2}θ{r}^{2}=4}\end{array}\right.$,解出即可得出.

解答 解:設扇形的半徑為r,圓心角為θ.
∵扇形的周長為8,面積為4,
∴$\left\{\begin{array}{l}{2r+θr=8}\\{\frac{1}{2}θ{r}^{2}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{θ=2}\\{r=2}\end{array}\right.$.
則扇形的圓心角是2.
故選:B.

點評 本題考查了扇形面積計算公式、弧長公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知cos($\frac{π}{2}$+α)=$\frac{1}{2}$,α∈(π,$\frac{3π}{2}$),則cosα=$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知直線l的斜率k滿足-1≤k<1,則它的傾斜角α的取值范圍是(  )
A.-45°<α<45°B.0°≤α<45°或135°≤α<180°
C.0°<α<45°或135°<α<180°D.-45°≤α<45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知等差數(shù)列{an}的公差2,若a1,a3,a4成等比數(shù)列,則等比數(shù)列的公比為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合P={x|x2-2x≥0},Q={x|log2(x-1)<1},則(∁RP)∩Q=( 。
A.[0,1)B.(0,2)C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知x和y滿足約束條件$\left\{{\begin{array}{l}{x+y≥4}\\{x+4≥y}\\{x≤4}\end{array}}\right.$,則目標函數(shù)z=x2+y2-2y的最小值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.據(jù)報我國正分別在大連和上海建造兩航母,而建造航母必需特種鋼.為建造航母的需要,要將兩種不同的特種鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截成三種規(guī)格的小鋼板的塊數(shù)如下表所示:
規(guī)格類型
鋼板類型
A規(guī)格B規(guī)格C規(guī)格
第一種鋼板211
第二種鋼板123
今需要A、B、C三種規(guī)格的成品分別15、18、27塊.問各截這兩種鋼板多少張可得所需三種規(guī)格成品,且使所用鋼板張數(shù)最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知奇函數(shù)f(x)滿足對任意x∈R都有f(x+6)=f(x)+f(3)成立,且f(1)=1,則f(2015)+f(2016)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.經過兩個點M(3,-2)與N(-1,-4)且圓心在直線x+3y+1=0上的圓的標準方程為($x+\frac{2}{5}$)2+(y+$\frac{1}{5}$)2=$\frac{74}{5}$.

查看答案和解析>>

同步練習冊答案