已知函數(shù)f(x)=4cosxsinx(x+
π
6
)-1.求f(x)的單調(diào)增區(qū)間
 
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專(zhuān)題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:首先通過(guò)三角函數(shù)的恒等變換,把三角函數(shù)變形成正弦型函數(shù),進(jìn)一步利用整體思想求出函數(shù)的單調(diào)遞增區(qū)間.
解答: 解:函數(shù)f(x)=4cosxsin(x+
π
6
)-1
=4cosx(sinx
3
2
+
1
2
cosx
)-1
=
3
sin2x+cos2x

=2sin(2x+
π
6

令:-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ
(k∈Z)
解得:-
π
3
+kπ≤x≤
π
6
+kπ

所以函數(shù)f(x)的單調(diào)遞增區(qū)間為:[-
π
3
+kπ,
π
6
+kπ
](k∈Z)
故答案為:[-
π
3
+kπ,
π
6
+kπ
](k∈Z)
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,利用整體思想求正弦型函數(shù)的單調(diào)區(qū)間.屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=a+
2bx+3sinx+bxcosx
2+cosx
(a、b∈R)有最大值和最小值,且最大值與最小值的和為6,則3a+2b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1+i
1-i
6+
2
+
3
i
3
-
2
i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)原來(lái)每年可生產(chǎn)某種設(shè)備65件,每件設(shè)備的銷(xiāo)售價(jià)格為10萬(wàn)元,為了增加企業(yè)效益,該企業(yè)今年準(zhǔn)備投入資金x萬(wàn)元對(duì)生產(chǎn)工藝進(jìn)行革新,已知每投入10萬(wàn)元資金生產(chǎn)的設(shè)備就增加1件,同時(shí)每件設(shè)備的生產(chǎn)成本a萬(wàn)元與投入資金x萬(wàn)元之間的關(guān)系是a=
25
x+25
,若設(shè)備的銷(xiāo)售價(jià)格不變,生產(chǎn)的設(shè)備能全部賣(mài)出,投入資金革新后的年利潤(rùn)為y萬(wàn)元(年利潤(rùn)=年銷(xiāo)售額-年投入資金額-年生產(chǎn)成本).
(Ⅰ)試將該企業(yè)的年利潤(rùn)y萬(wàn)元表示為投入資金x萬(wàn)元的函數(shù);
(Ⅱ)該企業(yè)投入資金為多少萬(wàn)元時(shí),企業(yè)的年利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3x-x3+4在x∈[1,2]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1.
(1)求證:直線(xiàn)BC1∥平面D1AC.
(2)求D1C與平面D1BC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠的一個(gè)車(chē)間有5臺(tái)同一型號(hào)機(jī)器均在獨(dú)立運(yùn)行,一天中每臺(tái)機(jī)器發(fā)生故障的概率為0.1,若每一天該車(chē)間獲取利潤(rùn)y(萬(wàn)元)與“不發(fā)生故障”的機(jī)器臺(tái)數(shù)n(n∈N,n≤5)之間滿(mǎn)足關(guān)系式:y=
-6(n≤2)
3n-3(n≥3)

(Ⅰ)求某一天中有兩臺(tái)機(jī)器發(fā)生故障的概率;
(Ⅱ)求這個(gè)車(chē)間一天內(nèi)可能獲取利潤(rùn)的均值(.精確到0.01).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABCA1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求證:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了調(diào)查某班學(xué)生做數(shù)學(xué)題的基本能力,隨機(jī)抽查了部分學(xué)生某次做一份滿(mǎn)分為100分的數(shù)學(xué)試題,他們所得分?jǐn)?shù)的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95),由此得到頻率分布直方圖如圖,則這些學(xué)生的平均分為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案