設(shè)函數(shù)內(nèi)有極值.
(1)求實(shí)數(shù)的取值范圍;
(2)若求證:.

(1);(2)證明見解析.

解析試題分析:
解題思路:(1)利用有極值有解進(jìn)行求解;
(2)要證,即證上是最小值與的最大值之差大于.
規(guī)律總結(jié):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值及與函數(shù)有關(guān)的綜合題,都體現(xiàn)了導(dǎo)數(shù)的重要性;此類問題往往從求導(dǎo)入手,思路清晰;但綜合性較強(qiáng),需學(xué)生有較高的邏輯思維和運(yùn)算能力.
試題解析:(1)0<x<1或x>1時(shí),
內(nèi)有解,令,
=1不妨設(shè),則,因,所以,解得
(2)證明:由,由,得上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增.由,得,由,得,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/28/6b/2886b09b0c2ce91949626778580ffccb.png" style="vertical-align:middle;" />,所以

 

,上單調(diào)遞增,
所以
.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值與最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中
(1)若,求函數(shù)的極值點(diǎn)和極值;
(2)求函數(shù)在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).
(1)設(shè)是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處都取得極值.
(1)求函數(shù)的解析式;
(2)求函數(shù)在區(qū)間[-2,2]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) (R).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)的圖象與軸有且只有一個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為實(shí)數(shù),),,⑴若,且函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7f/4/cnqz62.png" style="vertical-align:middle;" />,求的表達(dá)式;
⑵設(shè),且函數(shù)為偶函數(shù),判斷是否大0?
⑶設(shè),當(dāng)時(shí),證明:對(duì)任意實(shí)數(shù),(其中的導(dǎo)函數(shù)) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)滿足:①在時(shí)有極值;②圖像過點(diǎn),且在該點(diǎn)處的切線與直線平行.
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知處都取得極值.
(1)求,的值;
(2)設(shè)函數(shù),若對(duì)任意的,總存在,使得:,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

曲線在點(diǎn)處的切線方程是              

查看答案和解析>>

同步練習(xí)冊(cè)答案