設F1,F2分別是橢圓E:x2+=1(0<b<1)的左、右焦點,過點F1的直線交橢圓E于A,B兩點.若|AF1|=3|F1B|,AF2⊥x軸,則橢圓E的方程為________.
科目:高中數(shù)學 來源: 題型:
行四邊形ABCD的一條對角線固定在A(3,-1),C(2,-3)兩點,D點在直線3x-y+1=0上移動,則B點的軌跡方程為( )
A.3x-y-20=0 B.3x-y-10=0
C.3x-y-9=0 D.3x-y-12=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知曲線C的方程為:ax2+ay2-2a2x-4y=0(a≠0,a為常數(shù)).
(1)判斷曲線C的形狀;
(2)設曲線C分別與x軸,y軸交于點A,B(A,B不同于原點O),試判斷△AOB的面積S是否為定值?并證明你的判斷;
(3)設直線l:y=-2x+4與曲線C交于不同的兩點M,N,且|OM|=|ON|,求曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
過點M(1,1)作斜率為-的直線與橢圓C:+=1(a>b>0)相交于A,B兩點,若M是線段AB的中點,則橢圓C的離心率為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知雙曲線-=1(a>0,b>0)的右焦點為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點為A,過A作圓的切線,斜率為-,求雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,拋物線C1:y2=2px和圓C2:(x-)2+y2=,其中p>0,直線l經過C1的焦點,依次交C1,C2于A,B,C,D四點,則·的值為( )
A.p2 B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com