【題目】有一個不透明的袋子,裝有4個大小形狀完全相同的小球,球上分別標有數字1,2,3,4.現按如下兩種方式隨機取球兩次,每種方式中第1次取到球的編號記為,第2次取到球的編號記為.
(1)若逐個不放回地取球,求是奇數的概率;
(2)若第1次取完球后將球再放回袋中,然后進行第2次取球,求直線與雙曲線有公共點的概率.
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.
(1)求C的方程;
(2)設直線l不經過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,過點的動直線交拋物線于,兩點
(1)當恰為的中點時,求直線的方程;
(2)拋物線上是否存在一個定點,使得以弦為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線的參數方程為(為參數,且),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為.
(1)將曲線的參數方程化為普通方程,并將曲線的極坐標方程化為直角坐標方程;
(2)求曲線與曲線交點的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4—4:坐標系與參數方程]:在直角坐標系中,直線的參數方程為(t為參數,),以坐標原點為極點,以x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為,已知直線與曲線C交于不同的兩點A,B.
(1)求直線的普通方程和曲線C的直角坐標方程;
(2)設P(1,2),求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的離心率為,焦距為.
(1)求的方程;
(2)若斜率為的直線與橢圓交于,兩點(點,均在第一象限),為坐標原點.
①證明:直線的斜率依次成等比數列.
②若與關于軸對稱,證明:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com