【題目】已知橢圓經(jīng)過點,一個焦點為.
(1)求橢圓的方程;
(2)若直線與軸交于點,與橢圓交于兩點,線段的垂直平分線與軸交于點,求的取值范圍.
【答案】(1)橢圓的方程是;(2)的取值范圍為.
【解析】
試題(1)求橢圓的方程,已知橢圓經(jīng)過點,一個焦點為,故可用待定系數(shù)法,利用焦點為可得,利用過點,可得,再由,即可解出,從而得橢圓的方程;(2)求的取值范圍,由弦長公式可求得線段的長,因此可設(shè),由得,,則是方程的兩根,有根與系數(shù)關(guān)系,得,,由弦長公式求得線段的長,求的長,需求出的坐標,直線與軸交于點,可得,線段的垂直平分線與軸交于點,故先求出線段的中點坐標,寫出線段的垂直平分線方程,令,既得點的坐標,從而得的長,這樣就得的取值范圍.
試題解析:(1)由題意得解得,.
所以橢圓的方程是. 4分
(2)由得.
設(shè),則有,,
.所以線段的中點坐標為,
所以線段的垂直平分線方程為.
于是,線段的垂直平分線與軸的交點,又點,
所以.
又.
于是,.
因為,所以.所以的取值范圍為. 14分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校進入高中數(shù)學(xué)競賽復(fù)賽的學(xué)生中,高一年級有6人,高二年級有12人, 高三年級有24人,現(xiàn)采用分層抽樣的方法從這些學(xué)生中抽取7人進行采訪.
(1)求應(yīng)從各年級分別抽取的人數(shù);
(2)若從抽取的7人中再隨機抽取2人做進一步了解(注高一學(xué)生記為,高二學(xué)生記為,高三學(xué)生記為,)
①列出所有可能的抽取結(jié)果;
②求抽取的2人均為高三年級學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線:的焦點為,直線與交于,兩點,的面積為.
(1)求的方程;
(2)若,是上的兩個動點,,試問:是否存在定點,使得?若存在,求的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.
(1)求拋物線方程;
(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某省高三男生身高情況,現(xiàn)從某校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于157.5cm和187.5cm之間,將測量結(jié)果按如下方式分成6組:第一組,第二組,…,第六組,下圖是按照上述分組方法得到的頻率分布直方圖.
(1)求該學(xué)校高三年級男生的平均身高;
(2)利用分層抽樣的方式從這50名男生中抽出20人,求抽出的這20人中,身高在177.5cm以上(含177.5cm)的人數(shù);
(3)從根據(jù)(2)選出的身高在177.5cm以上(含177.5cm)的男生中任意抽取2人,求此二人來自于不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域為的函數(shù)圖像的兩個端點為、,向量,是圖像上任意一點,其中,若不等式恒成立,則稱函數(shù)在上滿足“范圍線性近似”,其中最小正實數(shù)稱為該函數(shù)的線性近似閾值.若函數(shù)定義在上,則該函數(shù)的線性近似閾值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三條直線:(),:,:,若與的距離是.
(1)求a的值:
(2)能否找到一點P,使得點P同時滿足下列三個條件:①P是第一象限的點;②點P到的距離是點P到的距離的;③點P到的距離與點P到的距離之比是,若能,求出點P的坐標,若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公歷月日為我國傳統(tǒng)清明節(jié),清明節(jié)掃墓我們都要獻鮮花,某種鮮花的價格會隨著需求量的增加而上升.一個批發(fā)市場向某地商店供應(yīng)這種鮮花,具體價格統(tǒng)計如下表所示
日供應(yīng)量(束) | ||||||
單位(元) |
(I)根據(jù)上表中的數(shù)據(jù)進行判斷,函數(shù)模型與哪一個更適合于體現(xiàn)日供應(yīng)量與單價之間的關(guān)系;(給出判斷即可,不必說明理由)
(II)根據(jù)(I)的判斷結(jié)果以及參考數(shù)據(jù),建立關(guān)于的回歸方程;
(III)該地區(qū)有個商店,其中個商店每日對這種鮮花的需求量在束以下,個商店每日對這種鮮花的需求量在束以上,則從這個商店個中任取個進行調(diào)查,求恰有個商店對這種鮮花的需求量在束以上的概率.
參考公式及相關(guān)數(shù)據(jù):對于一組數(shù)據(jù),,...,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某闖關(guān)游戲共有兩關(guān),游戲規(guī)則:先闖第一關(guān),當?shù)谝魂P(guān)闖過后,才能進入第二關(guān),兩關(guān)都闖過,則闖關(guān)成功,且每關(guān)各有兩次闖關(guān)機會.已知闖關(guān)者甲第一關(guān)每次闖過的概率均為,第二關(guān)每次闖過的概率均為.假設(shè)他不放棄每次闖關(guān)機會,且每次闖關(guān)互不影響.
(1)求甲恰好闖關(guān)3次才闖關(guān)成功的概率;
(2)記甲闖關(guān)的次數(shù)為,求隨機變量的分布列和期望.。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com