【題目】如圖,三棱柱的底面是等邊三角形,在底面ABC上的射影為△ABC的重心G.
(1)已知,證明:平面平面;
(2)已知平面與平面ABC所成的二面角為60°,G到直線AB的距離為a,求銳二面角的余弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)連接并延長交于,易知平面,進(jìn)而可證明平面,可得,再由四邊形是菱形,可得,從而可證明平面,進(jìn)而可證明平面平面;
(2)連接,易知,進(jìn)而可得,結(jié)合平面與平面所成的二面角的平面角為,由,可得,,,從而以為原點(diǎn),,分別作為軸、軸,過點(diǎn)作平行與的直線為軸,建立如圖所示的空間直角坐標(biāo)系,分別求出平面、平面的法向量、,由,進(jìn)而可求出銳二面角的余弦值.
(1)證明:連接并延長交于,由已知得平面,
由平面,可得,
又,,平面,平面,所以平面,
由平面,可得,
因?yàn)樗倪呅?/span>是平行四邊形,且,所以四邊形是菱形,所以,
又因?yàn)?/span>,且平面,平面,所以平面,
因?yàn)?/span>平面,所以平面平面.
(2)連接,因?yàn)?/span>在底面上的射影是的重心,
所以與全等,
所以,因?yàn)?/span>,所以點(diǎn)為中點(diǎn),所以,
故平面與平面所成的二面角的平面角為,
由,得,,,
故以為原點(diǎn),直線分別作為軸、軸,過點(diǎn)作平行與的直線為軸,建立如圖所示的空間直角坐標(biāo)系,
則,,,,,
所以,,,
設(shè)為平面的一個法向量,
則,可取,
設(shè)平面的一個法向量為,
則,可取,
所以,
故銳二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,若,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當(dāng)時,,求在上的解析式;
(3)對于(2)中的,若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若雙曲線的實(shí)軸長為6,焦距為10,右焦點(diǎn)為,則下列結(jié)論正確的是( )
A.的漸近線上的點(diǎn)到距離的最小值為4B.的離心率為
C.上的點(diǎn)到距離的最小值為2D.過的最短的弦長為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式(b,c為大于0的常數(shù)).按照某項(xiàng)指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質(zhì)量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)現(xiàn)從抽取的6件合格產(chǎn)品中再任選2件,求選中的2件均為優(yōu)等品的概率;
(2)根據(jù)測得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計(jì)量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根據(jù)所給統(tǒng)計(jì)量,求y關(guān)于x的回歸方程.
附:對于樣本,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方體的棱的中點(diǎn),下列命題中真命題是( )
A.過點(diǎn)有且只有一條直線與直線都相交
B.過點(diǎn)有且只有一條直線與直線都垂直
C.過點(diǎn)有且只有一個平面與直線都相交
D.過點(diǎn)有且只有一個平面與直線都平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,,以,,和為頂點(diǎn)的梯形的高為,面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),為橢圓上的任意兩點(diǎn),若直線與圓相切,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:離心率是分別是橢圓的左右焦點(diǎn),過作斜率為的直線,交橢圓于,兩點(diǎn),且三角形周長
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線分別交軸于不同的兩點(diǎn),.如果為銳角,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com