13.函數(shù)f(x)=$\frac{1}{3}$x3-ax2-3a2x-4在(3,+∞)上是增函數(shù),則實數(shù)a的取值范圍是(  )
A.a≥0B.a≥1C.a≤-3或a≥1D.-3≤a≤1

分析 根據(jù)題意,可將問題轉(zhuǎn)化為導函數(shù)y′≥0在(3,+∞)上恒成立,即求y′min≥0,運用二次函數(shù)的性質(zhì)即可求得y′min,從而得到關(guān)于a的不等關(guān)系,求解即可得到a的取值范圍.

解答 解:∵y=$\frac{1}{3}$x3-ax2-3a2x-4,
∴y′=x2-2ax-3a2
∵函數(shù)y=$\frac{1}{3}$x3-ax2-3a2x-4在(3,+∞)上是增函數(shù),
∴y′=x2-2ax-3a2≥0在(3,+∞)上恒成立,
∵y′=x2-2ax-3a2=(x-a)2-4a2,
①對稱軸為x=a=3,y′<0,不成立;
②當a>3,-4a2>0,無解;
當a<3,y′在(3,+∞)單調(diào)遞增,
∴y′>32-2a×3-3a2=9-6a-3a2≥0,
∴-3≤a≤1,
∴實數(shù)a的取值范圍是[-3,1],
故選:D.

點評 本題考查了函數(shù)單調(diào)性的綜合運用,函數(shù)的單調(diào)性對應著導數(shù)的正負,若已知函數(shù)的單調(diào)性,經(jīng)常會將其轉(zhuǎn)化成恒成立問題解決.屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=2,向量$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$夾角為$\frac{2π}{3}$,則$\overrightarrow{a}$$•\overrightarrow$的取值范圍是$[2-\frac{4\sqrt{3}}{3},2+\frac{4\sqrt{3}}{3}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知雙曲線$\frac{{x}^{2}}{3}$-y2=1,過右焦點向其漸近線作垂線,與兩條漸近線分別交于A,B兩點,O為坐標原點,則三角形AOB的面積是( 。
A.$\frac{3}{2}$B.$\frac{3\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.sin2θ=$\frac{2}{3}$,θ∈(-$\frac{π}{2}$,π),則sinθ+cosθ=$\frac{\sqrt{15}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知數(shù)列{an}滿足an+3an+1=0,a4=-$\frac{4}{27}$,則數(shù)列{an}的前10項和S10=3(1-$\frac{1}{{3}^{10}}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.定義max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,若實數(shù)x,y滿足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,則max{|2x+1|,|x-y+5|}的最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.將函數(shù)y=loga$\frac{a(x+1)+2}{x}$(a>0,a≠1)的圖象向右平移1個單位得到函數(shù)y=f(x)的圖象.
(1)若x∈(3,+∞),求函數(shù)y=f(x)的值域;
(2)若y=f(x)在區(qū)間(-3,-1)上單調(diào)遞減,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在△ABC中,若a=1,b=$\sqrt{3}$,A+C=2B,則A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.數(shù)列{an}為等比數(shù)列,前n項和為Sn=2n-t,求t的值,并求an的通項公式.

查看答案和解析>>

同步練習冊答案