1.圓x2+y2=9,以M(2,1)為中點(diǎn)的弦所在的直線方程為( 。
A.x+2y-4=0B.4x+y-9=0C.2x-y-3=0D.2x+y-5=0

分析 求出kOM=$\frac{1}{2}$,即可求出以點(diǎn)M(2,1)為中點(diǎn)的弦所在直線方程.

解答 解:x2+y2=9的圓心為(0,0),則kOM=$\frac{1}{2}$,
∴以點(diǎn)M(2,1)為中點(diǎn)的弦所在直線方程為y-1=-2(x-2),即2x+y-5=0.
故選D.

點(diǎn)評 本題考查軌跡方程,求出kOM=$\frac{1}{2}$是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知p:x2-8x-20<0,q:x2-2x+1-a2≤0(a>0),若¬p是¬q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如表是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù).由散點(diǎn)圖可知,用水量y與月份x之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是$\stackrel{∧}{y}$=-0.7x+a,則a=(  )
月份x1234
用水量y4.5432.5
A.10.5B.5.15C.5.2D.5.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知在極坐標(biāo)系中,點(diǎn)A(2,$\frac{π}{2}$),B($\sqrt{2}$,$\frac{3π}{4}$),O(0,0),則△ABO為( 。
A.正三角形B.直角三角形C.等腰銳角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知三點(diǎn)A(-1,-1),B(1,x),C(2,5)共線,則x的值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在把1111(2)化為十進(jìn)制數(shù)的程序框圖,判斷框內(nèi)應(yīng)填入的內(nèi)容為i<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.集合$A=\left\{{x|f(x)=\sqrt{{2^x}-1}}\right\}$,$B=\left\{{y|y={{log}_2}({{2^x}+2})}\right\}$,則A∩∁RB=( 。
A.(1,+∞)B.[0,1]C.[0,1)D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某個(gè)不透明的盒子里有5枚質(zhì)地均勻、大小相等的銅幣,銅幣有兩種顏色,一種為黃色,一種為綠色.其中黃色銅幣兩枚,標(biāo)號分別為1,2,綠色銅幣三枚,標(biāo)號分別為1,2,3.
(1)從該盒子中任取2枚,試列出一次實(shí)驗(yàn)所有可能出現(xiàn)的結(jié)果;
(2)從該盒子中任取2枚,求這兩枚銅幣顏色不同且標(biāo)號之和大于3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.阿基米德在《論球與圓柱》一書中推導(dǎo)球的體積公式時(shí),得到一個(gè)等價(jià)的三角恒等式sin$\frac{π}{2n}+sin\frac{2π}{2n}+…+\frac{(2n-1)π}{2n}=\frac{1}{{tan\frac{π}{4n}}}$,若在兩邊同乘以$\frac{π}{2n}$,并令n→+∞,則左邊=$\lim_{x→∞}\sum_{i=1}^{2n}{\frac{π}{2n}sin\frac{iπ}{2n}}=\int_0^π{sinxdx}$.因此阿基米德實(shí)際上獲得定積分$\int_0^π{sinxdx}$的等價(jià)結(jié)果.則$\int_0^π{sinxdx}$=2.

查看答案和解析>>

同步練習(xí)冊答案