分析 (1)由判別式大于或等于零,求得實數(shù)m的取值范圍.
(2)令f(x)=4x2-4mx+m+2,則有$\left\{\begin{array}{l}{△=1{6m}^{2}-16(m+2)≥0}\\{\frac{m}{2}≥\frac{1}{2}}\\{f(\frac{1}{2})≥0}\end{array}\right.$,由此求得實數(shù)m的取值范圍.
(3)根據(jù)韋達定理可得α2+β2 =(α+β)2-2αβ=m2-2•$\frac{m+2}{4}$=${(m-\frac{1}{4})}^{2}$-$\frac{17}{16}$,再利用二次函數(shù)的性質求得實數(shù)m的取值范圍.
解答 解:(1)根據(jù)α,β是關于x的方程4x2-4mx+m+2=0的兩個實根,
可得△=16m2-4×4(m+2)≥0,即 (m-2)(m+1)≥0,
求得 m≤-1或 m≥2.
(2)若α≥$\frac{1}{2}$,β≥$\frac{1}{2}$,令f(x)=4x2-4mx+m+2,則有$\left\{\begin{array}{l}{△=1{6m}^{2}-16(m+2)≥0}\\{\frac{m}{2}≥\frac{1}{2}}\\{f(\frac{1}{2})≥0}\end{array}\right.$,
求得2≤m≤3.
(3)在(2)的條件下,α2+β2 =(α+β)2-2αβ=m2-2•$\frac{m+2}{4}$=${(m-\frac{1}{4})}^{2}$-$\frac{17}{16}$,
故當m=3 時,α2+β2的取得最大值為$\frac{\sqrt{26}}{2}$,當 m=1時,α2+β2的取得最小值為-$\frac{1}{2}$.
點評 本題主要考查一元二次方程根的分布與系數(shù)的關系,二次函數(shù)的性質,體現(xiàn)了轉化的數(shù)學思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com