分析 將原函數(shù)式變形,可得y可看成平面直角坐標(biāo)系中,點(diǎn)(x,0)到點(diǎn)A(-1,2)的距離與點(diǎn)(x,0)到點(diǎn)B(4,2)的距離的和,所以作(4,2)關(guān)于x軸的對稱點(diǎn)B′,連接AB′,則AB′的長度便是y的最小值,所以求AB′的長度即可.
解答 解:y=$\sqrt{{x}^{2}+2x+5}$+$\sqrt{{x}^{2}-8x+20}$=$\sqrt{{{(x+1)}^{2}+(0-2)}^{2}}$+$\sqrt{{(x-4)}^{2}{+(0-2)}^{2}}$;
∴y表示平面直角坐標(biāo)系中:點(diǎn)(x,0)到點(diǎn)A(-1,2)的距離與點(diǎn)(x,0)到點(diǎn)B(4,2)的距離的和;
如圖:
,
作B點(diǎn)關(guān)于x軸的對稱點(diǎn)B′(4,-2),連接AB′,
則AB′的長度即是y的最小值;
由圖象得|AB′|=$\sqrt{41}$;
∴原函數(shù)y的最小值是$\sqrt{41}$.
點(diǎn)評 考查平面直角坐標(biāo)系中兩點(diǎn)間的距離公式,轉(zhuǎn)化的方法:將求函數(shù)的最小值轉(zhuǎn)化成求距離和的最小值,數(shù)形結(jié)合的解題方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | arctan$\frac{\sqrt{3}}{3}$ | C. | $\frac{π}{3}$ | D. | arctan$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com