精英家教網 > 高中數學 > 題目詳情

已知橢圓,左右焦點分別為,
(1)若上一點滿足,求的面積;
(2)直線于點,線段的中點為,求直線的方程。

(1).(2)。

解析試題分析:(1)由于橢圓定義可以得到,那么根據直角三角形得到,從而得到,得到面積的值。
(2)設出點A,B的坐標,代入橢圓方程中,然后作差,得到AB的斜率與AB的中點坐標關系進而求解。
解:(1)由第一定義,,即
由勾股定理,,所以,.
(2)設,滿足,,兩式作差,將代入,得,可得,直線方程為:。
考點:本試題主要考查了橢圓的定義以及直線與橢圓的位置關系的綜合運用。
點評:解決該試題的關鍵是根據定義結合直角三角形勾股定理得到三角形的面積的值。并能利用點差法思想得到弦中點與直線的斜率的關系式。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
設雙曲線與直線交于兩個不同的點,求雙曲線的離心率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為雙曲線的左、右焦點.
(Ⅰ)若點為雙曲線與圓的一個交點,且滿足,求此雙曲線的離心率;
(Ⅱ)設雙曲線的漸近線方程為,到漸近線的距離是,過的直線交雙曲線于A,B兩點,且以AB為直徑的圓與軸相切,求線段AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)已知點的坐標分別為,直線相交于點,且它們的斜率之積是,試討論點的軌跡是什么。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題12分)已知,且點A和點B都在橢圓內部,
(1)請列出有序數組的所有可能結果;
(2)記“使得成立的”為事件A,求事件A發(fā)生的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)拋物線的焦點為,過點的直線交拋物線于,兩點.
為坐標原點,求證:;
②設點在線段上運動,原點關于點的對稱點為,求四邊形面積的最小值..

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)在平面直角坐標系O中,直線與拋物線=2相交于A、B兩點.
(Ⅰ)求證:命題“如果直線過點T(3,0),那么=3”是真命題;
(Ⅱ)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分) 如圖,已知拋物線與坐標軸分別交于A、B、C三點,過坐標原點O的直線與拋物線交于M、N兩點.分別過點C、D作平行于軸的直線、.(1)求拋物線對應的二次函數的解析式;(2)求證:以ON為直徑的圓與直線相切;(3)求線段MN的長(用表示),并證明M、N兩點到直線的距離之和等于線段MN的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

直線與橢圓交于,兩點,已知,,若且橢圓的離心率,又橢圓經過點為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點為半焦距),求直線的斜率的值;
(Ⅲ)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

同步練習冊答案