分析 (1)通過將圓C1的一般式方程化為標(biāo)準(zhǔn)方程即得結(jié)論;
(2)設(shè)當(dāng)直線l的方程為y=kx,通過聯(lián)立直線l與圓C1的方程,利用根的判別式大于0、韋達定理、中點坐標(biāo)公式及參數(shù)方程與普通方程的相互轉(zhuǎn)化,計算即得結(jié)論
解答 解:(1)∵圓C1:x2+y2-6x+5=0,
整理,得其標(biāo)準(zhǔn)方程為:(x-3)2+y2=4,
∴圓C1的圓心坐標(biāo)為(3,0);
(2)設(shè)當(dāng)直線l的方程為y=kx、A(x1,y1)、B(x2,y2),
與圓C1,聯(lián)立方程組,消去y可得:(1+k2)x2-6x+5=0,
由△=36-4(1+k2)×5>0,可得k2<$\frac{4}{5}$
由韋達定理,可得x1+x2=$\frac{6}{1+{k}^{2}}$,
∴線段AB的中點M的軌跡C的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{3}{1+{k}^{2}}}\\{y=\frac{3k}{1+{k}^{2}}}\end{array}\right.$,其中-$\frac{2\sqrt{5}}{5}$<k<$\frac{2\sqrt{5}}{5}$,
∴線段AB的中點M的軌跡C的方程為:(x-$\frac{3}{2}$)2+y2=$\frac{9}{4}$,其中$\frac{5}{3}$<x≤3.
點評 本題考查求圓的方程、直線與曲線的位置關(guān)系問題,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相離 | B. | 相切 | C. | 相交 | D. | 以上都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{3\sqrt{3}}{2}$ | C. | 3$\sqrt{3}$ | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com