【題目】已知橢圓的左右焦點分別為, 若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點.
(1)求橢圓的方程;
(2)若點是點在軸上的垂足,延長交橢圓于,求證: 三點共線.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在橢圓上,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若為橢圓的右頂點,點是橢圓上不同的兩點(均異于)且滿足直線與斜率之積為.試判斷直線是否過定點,若是,求出定點坐標(biāo),若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的準線與軸交于點,過點做圓的兩條切線,切點為.
(1)求拋物線的方程;
(2)若直線是講過定點的一條直線,且與拋物線交于兩點,過定點作的垂線與拋物線交于兩點,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點與拋物線 的焦點重合,橢圓的離心率為,過點作斜率不為0的直線,交橢圓于兩點,點,且為定值.
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)準備參加考試,在正式考試之前進行了十次模擬測試,測試成績?nèi)缦拢?/span>
甲:137,121,131,120,129,119,132,123,125,133
乙:110,130,147,127,146,114,126,110,144,146
(1)畫出甲、乙兩人成績的莖葉圖,求出甲同學(xué)成績的平均數(shù)和方差,并根據(jù)莖葉圖,寫出甲、乙兩位同學(xué)平均成績以及兩位同學(xué)成績的中位數(shù)的大小關(guān)系的結(jié)論;
(2)規(guī)定成績超過127為“良好”,現(xiàn)在老師分別從甲、乙兩人成績中各隨機選出一個,求選出成績“良好”的個數(shù)的分布列和數(shù)學(xué)期望.
(注:方差,其中為的平均數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)是偶函數(shù);
(2)設(shè),求關(guān)于的函數(shù)在時的值域的表達式;
(3)若關(guān)于的不等式在時恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市準備引進優(yōu)秀企業(yè)進行城市建設(shè). 城市的甲地、乙地分別對5個企業(yè)(共10個企業(yè))進行綜合評估,得分情況如莖葉圖所示.
(Ⅰ)根據(jù)莖葉圖,求乙地對企業(yè)評估得分的平均值和方差;
(Ⅱ)規(guī)定得分在85分以上為優(yōu)秀企業(yè). 若從甲、乙兩地準備引進的優(yōu)秀企業(yè)中各隨機選取1個,求這兩個企業(yè)得分的差的絕對值不超過5分的概率.
注:方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為, 若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點.
(1)求橢圓的方程;
(2)若點是點在軸上的垂足,延長交橢圓于,求證: 三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠為預(yù)測產(chǎn)品的回收率,需要研究它和原料有效成分含量之間的相關(guān)關(guān)系,現(xiàn)收集了4組對照數(shù)據(jù)。
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(Ⅰ)請根據(jù)相關(guān)系數(shù)的大小判斷回收率與之間是否存在高度線性相關(guān)關(guān)系;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并預(yù)測當(dāng)時回收率的值.
參考數(shù)據(jù):
1 | 0 | 其他 | |||
相關(guān)關(guān)系 | 完全相關(guān) | 不相關(guān) | 高度相關(guān) | 低度相關(guān) | 中度相關(guān) |
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com