分析 (1)先根據(jù)拋物線方程求得拋物線的焦點(diǎn)坐標(biāo),進(jìn)而根據(jù)點(diǎn)斜式求得直線的方程與拋物線方程聯(lián)立,消去y,根據(jù)韋達(dá)定理求得x1+x2的值,進(jìn)而根據(jù)拋物線的定義可知|AB|=x1+$\frac{p}{2}$+x2+$\frac{p}{2}$=x1+x2+p得答案;
(2)利用(1),可得AB的中點(diǎn)M的坐標(biāo),從而求出|FM|.
解答 解:(1)拋物線焦點(diǎn)為(2,0)
則直線方程為y=2x-4,代入拋物線方程得x2-6x+4=0
∴x1+x2=6
根據(jù)拋物線的定義可知|AB|=x1+$\frac{p}{2}$+x2+$\frac{p}{2}$=x1+x2+p=6+4=10.
(2)AB的中點(diǎn)M的橫坐標(biāo)為3,縱坐標(biāo)為2×3-4=2,∴M(3,2),
∴|FM|=$\sqrt{(3-2)^{2}+(2-0)^{2}}$=$\sqrt{5}$
點(diǎn)評 本題主要考查了拋物線的簡單性質(zhì),考查學(xué)生的計算能力.解題的關(guān)鍵是靈活利用了拋物線的定義.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com