數(shù)列的前項(xiàng)和為,,,等差數(shù)列滿足.
(1)分別求數(shù)列,的通項(xiàng)公式;
(2)設(shè),求證.
(1)(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2d/e/dvis91.png" style="vertical-align:middle;" /> ,所以
,所以
解析試題分析:(1)由 -① 得 -②,
①②得, 2分
; 3分
4分
6分
(2)因?yàn)? 8分
所以 9分
所以 10分
11分
所以 12分
考點(diǎn):本題考查了數(shù)列通項(xiàng)公式及前n項(xiàng)和
點(diǎn)評(píng):數(shù)列的通項(xiàng)公式及應(yīng)用是數(shù)列的重點(diǎn)內(nèi)容,數(shù)列的大題對(duì)邏輯推理能力有較高的要求,在數(shù)列中突出考查學(xué)生的理性思維,這是近幾年新課標(biāo)高考對(duì)數(shù)列考查的一個(gè)亮點(diǎn),也是一種趨勢(shì).隨著新課標(biāo)實(shí)施的深入,高考關(guān)注的重點(diǎn)為等差、等比數(shù)列的通項(xiàng)公式,錯(cuò)位相減法、裂項(xiàng)相消法等求數(shù)列的前n項(xiàng)的和等等
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列前n項(xiàng)和,且.
(Ⅰ)試求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)數(shù)列的前項(xiàng)和為,且 .
(1)求的值及數(shù)列的通項(xiàng)公式;
(2)求證:;
(3)是否存在非零整數(shù),使不等式
對(duì)一切都成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是單調(diào)遞增的等差數(shù)列,首項(xiàng),前項(xiàng)和為,數(shù)列是等比數(shù)列,首項(xiàng)
(1)求和的通項(xiàng)公式.
(2)設(shè),數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的首項(xiàng)為,對(duì)任意的,定義.
(Ⅰ) 若,
(i)求的值和數(shù)列的通項(xiàng)公式;
(ii)求數(shù)列的前項(xiàng)和;
(Ⅱ)若,且,求數(shù)列的前項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知數(shù)列的通項(xiàng)公式為,數(shù)列的前n項(xiàng)和為,且滿足
(1)求的通項(xiàng)公式;
(2)在中是否存在使得是中的項(xiàng),若存在,請(qǐng)寫出滿足題意的一項(xiàng)(不要求寫出所有的項(xiàng));若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和,已知,且構(gòu)成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)數(shù)列的前項(xiàng)和記為,且滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)求和;
(3)設(shè)有項(xiàng)的數(shù)列是連續(xù)的正整數(shù)數(shù)列,并且滿足:
.
問數(shù)列最多有幾項(xiàng)?并求這些項(xiàng)的和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com