已知是單調(diào)遞增的等差數(shù)列,首項(xiàng),前項(xiàng)和為,數(shù)列是等比數(shù)列,首項(xiàng)
(1)求和的通項(xiàng)公式.
(2)設(shè),數(shù)列的前項(xiàng)和為,求證:.
(1),(2)
.
解析試題分析:(1)設(shè)公差為,公比為,則
,,
是單調(diào)遞增的等差數(shù)列,.
則,,
(2)∵,
∴
.
考點(diǎn):本題考查了數(shù)列的通項(xiàng)公式及求和
點(diǎn)評(píng):等差數(shù)列的通項(xiàng)公式及應(yīng)用是數(shù)列的重點(diǎn)內(nèi)容,數(shù)列的大題對(duì)邏輯推理能力有較高的要求,在數(shù)列中突出考查學(xué)生的理性思維,這是近幾年新課標(biāo)高考對(duì)數(shù)列考查的一個(gè)亮點(diǎn),也是一種趨勢(shì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),數(shù)列滿足。
(1)求;
(2)猜想數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法予以證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三次函數(shù)為奇函數(shù),且在點(diǎn)的切線方程為
(1)求函數(shù)的表達(dá)式;
(2)已知數(shù)列的各項(xiàng)都是正數(shù),且對(duì)于,都有,求數(shù)列的首項(xiàng)和通項(xiàng)公式;
(3)在(2)的條件下,若數(shù)列滿足,求數(shù)列的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且方程有一個(gè)根為,.
(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè)方程的另一個(gè)根為,數(shù)列的前項(xiàng)和為,求的值;
(3)是否存在不同的正整數(shù),使得,,成等比數(shù)列,若存在,求出滿足條件的,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,
(Ⅰ)求數(shù)列的前項(xiàng)和;
(Ⅱ)若存在,使得成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項(xiàng)和為,,,等差數(shù)列滿足.
(1)分別求數(shù)列,的通項(xiàng)公式;
(2)設(shè),求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
觀察下列三角形數(shù)表
記第行的第m個(gè)數(shù)為 .
(Ⅰ)分別寫出,,值的大;
(Ⅱ)歸納出的關(guān)系式,并求出關(guān)于n的函數(shù)表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知為等比數(shù)列,;為等差數(shù)列的前n項(xiàng)和,.
(1) 求和的通項(xiàng)公式;
(2) 設(shè),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)數(shù)列的前項(xiàng)和為.已知,,.
(Ⅰ)設(shè),求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com