已知二次函數(shù)f(x)=ax2+bx+c(a≠0)
(1)若a>b>c,且f(1)=0,證明:f(x)的圖象與x軸有2個交點;
(2)若常數(shù)x1,x2∈R且x1<x2,f(x1)≠f(x2),求證:方程f(x)=
1
2
[f(x1)+f(x2)]必有一根屬于(x1,x2).
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:(1)利用已知只要判斷△=b2-4ac>0;
(2)購造函數(shù)F(x)=f(x)-
1
2
[f(x1)+f(x2)],判斷F(x1)×F(x2)<0即可.
解答: 證明:∵f(1)=0,∴a+b+c=0,又a>b>c,故a>0,c<0,∴ac<0,
∴△=b2-4ac>0,
∴f(x)的圖象與x軸有2個交點.
(2)設F(x)=f(x)-
1
2
[f(x1)+f(x2)],則F(x1)×F(x2)=[f(x1)-
1
2
(f(x1)-
1
2
f(x2)]×[f(x2)-
1
2
f(x1)-
1
2
f(x2)]
=
1
2
[f(x1)-f(x2)]
1
2
[f(x2)-f(x1)]=-
1
4
[f(x1)-f(x2)]<0,
∴方程F(x)=0在(x1,x2)上必有一個實根,
即方程f(x)=
1
2
[f(x1)+f(x2)]必有一根屬于(x1,x2).
點評:本題考查了函數(shù)圖象與x軸交點問題以及根的存在性定理的運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2-6x-8y=0,a1,a2,…,a11是該圓過點P(3,5)的11條弦的長度,若數(shù)列a1,a2,…,a11是等差數(shù)列,則數(shù)列a1,a2,…,a11的公差的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x),g(x)分別由表給出:
x123
f(x)111
x123
g(x)321
則滿足f(g(x))<g(f(x))的x的值為( 。
A、1B、2
C、1或2D、1或2或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦點,M為橢圓上的動點,且
MF1
MF2
的最大值為1,最小值為-2.
(1)求橢圓C的方程;
(2)過點(-
6
5
,0)
作不與y軸垂直的直線l交該橢圓于M,N兩點,A為橢圓的左頂點.試判斷∠MAN是否為直角,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設二次函數(shù)f(x)=ax2+bx+c(a≠0)在區(qū)間[-2,2]上的最大值、最小值分別是M、m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={1},且a≥1,記g(a)=M+m,求g(a)的最小值.
(3)若集合B={x|f〔f(x)〕=x},且A=∅,求證:B=∅.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線a,b是異面直線是指
①a∩b=∅,且a與b不平行;    
②a?面α,b?面β,且平面α∩β=∅;
③a?面α,b?面β,且a∩b=∅;
④不存在平面α,能使a?α且b?α成立.
上述結(jié)論正確的有( 。
A、①④B、②③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=(x2+2x+k)2+2(x2+2x+k)-3恰有兩個零點,則k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≤
1
2
,x∈(-∞,a],則函數(shù)f(x)=x2-x+a+1的值域是(  )
A、[a+
3
4
,+∞)
B、[a2+1,+∞)
C、[1,+∞)
D、[
5
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=eax+3x的導數(shù)是
 

查看答案和解析>>

同步練習冊答案