18.對于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數(shù)f(x)為“可等域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個“可等域區(qū)間”,給出下列四個函數(shù):
①f(x)=sin$\frac{π}{2}$x;②f(x)=2x2-1;③f(x)=|1-2x|;④f(x)=lnx+1.
其中存在“可等域區(qū)間”的“可等域函數(shù)”為①②③.

分析 結合題意,分別寫出①f(x)=sin$\frac{π}{2}$x;②f(x)=2x2-1;③f(x)=|1-2x|的可等域區(qū)間,④判斷f(x)=lnx+1沒有可等域區(qū)間.

解答 解:①f(x)=sin$\frac{π}{2}$x的可等域區(qū)間有[0,1];
②f(x)=2x2-1的可等域區(qū)間有[-1,1];
③f(x)=|1-2x|的可等域區(qū)間有[0,1];
④f(x)=lnx+1是增函數(shù),
故令lnx+1=x,
解得,x=1;
故f(x)=lnx+1沒有可等域區(qū)間.
故答案為:①②③.

點評 本題考查了函數(shù)的性質(zhì)的判斷與應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=x-$\frac{a}{x}$-2lnx,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個極值點x1,x2,且x1<x2,
①求a的取值范圍;
②證明:f(x2)<x2-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,四棱錐P-ABCD中,PA⊥PD,AD⊥CD,PA=PD,AD∥BC,AB=AD=2BC=2,E是棱PD的中點,設二面角P-AD-B的值為θ.
(Ⅰ)當θ=$\frac{π}{2}$時,求證:AP⊥CE;
(Ⅱ)當θ=$\frac{π}{6}$時,求二面角P-AB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{4^x},x≤0\end{array}$則f(f($\frac{1}{2}$))=$\frac{1}{4}$;若函數(shù)g(x)=f(x)-k存在兩個零點,則實數(shù)k的取值范圍是(0.1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$),且f($\frac{π}{12}$)=1,為了得到g(x)=sin2x的圖象,則只要將f(x)的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向右平移$\frac{π}{3}$個單位
C.向左平移$\frac{π}{6}$個單位D.向右平移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=alnx-ax-2(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)的圖象在點(2,f(2))處的切線的傾斜角為135°,且函數(shù)g(x)=f(x)-mx2-2x+4存在單調(diào)遞減區(qū)間,求m的取值范圍;
(3)試比較$\frac{ln{2}^{2}}{{2}^{2}}$+$\frac{ln{3}^{2}}{{3}^{2}}$+$\frac{ln{4}^{2}}{{4}^{2}}$+…+$\frac{ln{n}^{2}}{{n}^{2}}$與$\frac{(n-1)(2n+1)}{2(n+1)}$的大。╪∈N*,n≥2),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知a,b∈R,則“$\sqrt{a-1}$>$\sqrt{b-1}$”是“l(fā)og2a>log2b”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(-k,10),且A、B、C三點共線,則k=( 。
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知:命題p:橢圓$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{2-m}$=1的焦點在x軸上,命題q:不等式x2+2xy≤m(2x2+y2)對于一切整數(shù)x,y恒成立.
(1)若p為假命題,求實數(shù)m的取值范圍;
(2)若p∧q是假命題,p∨q是真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案