13.已知函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$),且f($\frac{π}{12}$)=1,為了得到g(x)=sin2x的圖象,則只要將f(x)的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向右平移$\frac{π}{3}$個單位
C.向左平移$\frac{π}{6}$個單位D.向右平移$\frac{π}{6}$個單位

分析 由f($\frac{π}{12}$)=1,求得φ的值,可得函數(shù)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:由于函數(shù)f(x)=sin(2x+φ),f($\frac{π}{12}$)=sin($\frac{π}{6}$+φ)=1,∴$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,k∈z.
結(jié)合|φ|<$\frac{π}{2}$ 可得φ=$\frac{π}{3}$,f(x)=sin(2x+$\frac{π}{3}$).
把f(x)=sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個單位,
可得函數(shù)g(x)=sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=sin2x的圖象,
故選:D.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°.F為PA中點,PD=$\sqrt{2}$,AB=AD=$\frac{1}{2}$CD=1.四邊形PDCE為矩形,線段PC交DE于點N.
(Ⅰ)求證:AC∥平面DEF;
(Ⅱ)求二面角A-BC-P的大小;
(Ⅲ)在線段EF上是否存在一點Q,使得BQ與平面BCP所成角的大小為$\frac{π}{6}$?若存在,請求出FQ的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.橢圓$\frac{x^2}{2}+{y^2}=1$的離心率等于( 。
A.$\frac{1}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點P(3,1),其左、右焦點分別為F1、F2,且$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=-6,則橢圓E的離心率是( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知直線l:3x+4y+3=0和圓C:x2+y2-2x-2y+1=0.
(Ⅰ)判斷直線l與圓C的位置關系;
(Ⅱ)若P是直線l上的動點,PA是圓C的一條切線,A是切點,求三角形PAC的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.對于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數(shù)f(x)為“可等域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個“可等域區(qū)間”,給出下列四個函數(shù):
①f(x)=sin$\frac{π}{2}$x;②f(x)=2x2-1;③f(x)=|1-2x|;④f(x)=lnx+1.
其中存在“可等域區(qū)間”的“可等域函數(shù)”為①②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=|2x-3|+|2x-1|.
(1)求不等式f(x)≥3的解集;
(2)設m.n∈R,且m+n=1,求證:$\sqrt{2m+1}+\sqrt{2n+1}≤2\sqrt{f(x)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,底面邊長和側(cè)棱長均為2,D是BC的中點.
(Ⅰ)求證:AD⊥平面B1BCC1
(Ⅱ)求證:A1B∥平面ADC1;
(Ⅲ)求三棱錐C1-ADB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知a>0,b>0,a+4b=ab,則a+b的最小值是9.

查看答案和解析>>

同步練習冊答案