分析 (I)取BD中點(diǎn)O,連結(jié)PO,AO,則可證明OP⊥平面ABCD得出OP⊥CD,利用勾股定理的逆定理得出CD⊥BD,故而CD⊥平面PBD;
(II)代入體積公式V=13S梯形ABCD•OP計(jì)算即可.
解答 證明:(I)取BD中點(diǎn)O,連結(jié)PO,AO.
∵△PAB與△PAD都是等邊三角形,
∴AB=AD=PB=PD=PA=1.
∴OP⊥BD,OA⊥BD,
又∠BAD=90°,∴OA=OB=OD=√22,
∴OP=√PB2−OB2=√22,
∴OA2+OP2=PA2,∴OP⊥OA.
∴OP⊥平面ABCD,又CD?平面ABCD,
∴OP⊥CD.
∵ABCD是直角梯形,AD=AB=1,BC=2,∴CD=√(2−1)2+12=√2,
∴BD2+CD2=BC2,∴CD⊥BD.
又BD?平面PBD,OP?平面PBD,OP∩BD=O,
∴OP⊥平面PBD.
解:(Ⅱ)由(Ⅰ)可知OP⊥平面ABCD,
∴VP-ABCD=13S梯形ABCD•OP=13×12×(1+2)×1×√22=√24.
點(diǎn)評 本題考查了線面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,+∞) | B. | [4,+∞) | C. | (-∞,4) | D. | (-∞,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2√21 | B. | 3√21 | C. | 4√21 | D. | 5√21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -π+arcsin√24 | B. | -π-arcsin√24 | C. | -3π2+arcsin√24 | D. | -2π+arcsin√24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-132,0) | B. | (-116,0) | C. | (0,132) | D. | (0,116) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | √22 | B. | 1 | C. | √2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com