分析 (Ⅰ)當λ=3時,根據(jù)正弦定理,可得3a=b+c,根據(jù)余弦定理及b=c,可得cosA的值.
(Ⅱ)當A=60°時,由三角函數(shù)恒等變換的應用化簡可求λ=2sin(B+30°),由范圍B∈(0°,120°),由正弦函數(shù)的性質(zhì)可求λ的范圍.
解答 (本題滿分為13分)
解:(Ⅰ)當λ=3時,根據(jù)正弦定理,由3sinA=sinB+sinC,可得:3a=b+c,…2分
根據(jù)余弦定理cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{^{2}+{c}^{2}-(\frac{b+c}{3})^{2}}{2bc}$,…4分
由b=c,可得cosA=$\frac{7}{9}$.…6分
(Ⅱ)當A=60°時,$\frac{\sqrt{3}}{2}$λ=sinB+sinC=sinB+sin(120°-B)=sinB+$\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB=$\sqrt{3}$sin(B+30°),…9分
∴λ=2sin(B+30°)…10分
∵B∈(0°,120°),可得:B+30°∈(30°,150°),…11分
∴sin(B+30°)∈($\frac{1}{2}$,1],…12分
∴λ∈(1,2]…13分
點評 本題主要考查了正弦定理,余弦定理,三角函數(shù)恒等變換的應用,正弦函數(shù)的圖象和性質(zhì)的綜合應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
測試指標 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
產(chǎn)品A | 8 | 12 | 40 | 32 | 8 |
產(chǎn)品B | 7 | 18 | 40 | 29 | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com