【題目】如圖,在直三棱柱中, 、分別為、的中點(diǎn), , .

(1)求證:平面平面

(2)若直線和平面所成角的正弦值等于,求二面角的平面角的正弦值.

【答案】(1)見解析;(2).

【解析】試題分析:(1)要證面面垂直,先證線面垂直, 平面,再由面面垂直的判定得到面面垂直;(2)建系得到面的法向量和直線的方向向量,根據(jù)公式得到線面角的正弦值。.

解析:

(1)在直三棱柱中

平面, 平面

平面

又∵平面

∴平面平面.

(2)由(1)可知

點(diǎn)為坐標(biāo)原點(diǎn), 軸正方向, 軸正方向, 軸正方向,建立坐標(biāo)系.設(shè)

, , , , , ,

直線的方向向量,平面的法向量

可知

,

設(shè)平面的法向量

設(shè)平面的法向量

記二面角的平面角為

二面角的平面角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其中 為自然對(duì)數(shù)的底數(shù)).

1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

2)設(shè),若函數(shù)對(duì)任意都成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中, 是線段的中點(diǎn),且 平面

(Ⅰ)求證:平面平面

(Ⅱ)求證: 平面;

(Ⅲ)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的四個(gè)頂點(diǎn)組成的四邊形的面積為,且經(jīng)過點(diǎn)

1求橢圓的方程;

2若橢圓的下頂點(diǎn)為,如圖所示,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),過橢圓的右焦點(diǎn)的直線垂直于,且與交于兩點(diǎn),與交于點(diǎn),四邊形的面積分別為的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)調(diào)查了某班全部名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)

(1)能否由的把握認(rèn)為參加書法社團(tuán)和參加演講社團(tuán)有關(guān)?

(附:

當(dāng)時(shí),有的把握說事件有關(guān);當(dāng),認(rèn)為事件是無(wú)關(guān)的)

(2)已知既參加書法社團(tuán)又參加演講社團(tuán)的名同學(xué)中,有名男同學(xué) , , , 名女同學(xué) , .現(xiàn)從這名男同學(xué)和名女同學(xué)中各隨機(jī)選人,求被選中且未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018百校聯(lián)盟TOP20一月聯(lián)考函數(shù)處的切線斜率為

I)討論函數(shù)的單調(diào)性;

II)設(shè) ,對(duì)任意的,存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中, 平面,底面為梯形, , ,點(diǎn), 分別為 的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在線段上是否存在點(diǎn),使與平面所成角的正弦值是,若存在,求的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了凈化空氣,某科研單位根據(jù)實(shí)驗(yàn)得出,在一定范圍內(nèi),每噴灑1個(gè)單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間x(單位:天)變化的函數(shù)關(guān)系式近似為y 若多次噴灑,則某一時(shí)刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時(shí),它才能起到凈化空氣的作用.

(1)若一次噴灑4個(gè)單位的凈化劑,則凈化時(shí)間可達(dá)幾天?

(2)若第一次噴灑2個(gè)單位的凈化劑,6天后再噴灑a(1≤a≤4)個(gè)單位的藥劑,要使接下來(lái)的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,OACBD的交點(diǎn),EAD的中點(diǎn),A1E⊥平面ABCD.

(1)證明:A1O∥平面B1CD1

(2)設(shè)MOD的中點(diǎn),證明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

同步練習(xí)冊(cè)答案