【題目】已知復數(shù)z滿足|z|,z的實部大于0z2的虛部為2.

1)求復數(shù)z;

2)設復數(shù)zz2,zz2之在復平面上對應的點分別為A,B,C,求(的值.

【答案】11+i;(2)﹣2.

【解析】

1)先設出復數(shù)的表達式,結合已知條件中,實部大于,和的虛部為,列出方程求解出復數(shù)的表達式.

2)由(1)求出復數(shù)的表達式,即可得到,,在復平面上對應的點坐標,進而求出結果.

1)設復數(shù)z=x+yi,xyR;

由|z|,得x2+y2=2;

z的實部大于x>0,

z2=x2y2+2xyi的虛部為2xy=2,

所以xy=1;

解得x=1,y=1;

所以復數(shù)z=1+i;

2)復數(shù),則,;

A1,1),B0,2),C1,﹣1);

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點在原點,焦點在軸正半軸上,點到其準線的距離等于

)求拋物線的方程;

)如圖,過拋物線的焦點的直線從左到右依次與拋物線及圓交于、四點,試證明為定值.

)過、分別作拋物的切線,且、交于點,求面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點為,,是橢圓上半部分的動點,連接和長軸的左右兩個端點所得兩直線交正半軸于兩點(點的上方或重合).

(1)當面積最大時,求橢圓的方程;

(2)當時,若是線段的中點,求直線的方程;

(3)當時,在軸上是否存在點使得為定值,若存在,求點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)若函數(shù)有唯一零點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知直線lxy2=0,拋物線Cy2=2pxp0.

1)若直線l過拋物線C的焦點,求拋物線C的方程;

2)已知拋物線C上存在關于直線l對稱的相異兩點PQ.

求證:線段PQ的中點坐標為

p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若方程內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底);

2)令,如果圖象與軸交于,,中點為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:

超市

A

B

C

D

E

F

G

廣告費支出

1

2

4

6

11

13

19

銷售額

19

32

40

44

52

53

54

1)若用線性回歸模型擬合的關系,求關于的線性回歸方程;

2)用二次函數(shù)回歸模型擬合的關系,可得回歸方程:,

經(jīng)計算二次函數(shù)回歸模型和線性回歸模型的分別約為,請用說明選擇哪個回歸模型更合適,并用此模型預測超市廣告費支出為3萬元時的銷售額.

參數(shù)數(shù)據(jù)及公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是( )

A.命題“若,則”的逆否命題是“若,則

B.”是“”的充分不必要條件

C.為假命題,則均為假命題

D.命題:“,使得”,則非:“,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準:(單位:噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 …… 分成9組,制成了如圖所示的頻率分布直方圖

1)求頻率分布直方圖中的值;

2)若該市政府看望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由。

查看答案和解析>>

同步練習冊答案