14.已知函數(shù)f(x)的定義域?yàn)椋?2,2),導(dǎo)函數(shù)為f'(x)=x2+2cosx且f(0)=0,則滿足f(x-1)+f(x2-x)>0的實(shí)數(shù)x的范圍是(  )
A.(1,2)B.(-2,-1)∪(1,2)C.(-1,3)D.(-∞,-1)∪(1,+∞)

分析 由導(dǎo)函數(shù)可求原函數(shù)f(x),判斷函數(shù)f(x)單調(diào)性和奇偶性,利用奇偶性將不等式f(x-1)+f(x2-x)>0轉(zhuǎn)化成f(x-1)>f(-x2+x),利用單調(diào)性去掉函數(shù)符號f 即可解得所求,注意自變量本身范圍.

解答 解:∵f′(x)=x2+2cosx,
∴f(x)=$\frac{1}{3}$x3+2sinx+C;
又f(0)=0得,f(x)=x3+2sinx;
則f(x)為奇函數(shù),且為增函數(shù);
故f(x-1)+f(x2-x)>0可化為等價于f(x-1)>f(-x2+x),
$\left\{\begin{array}{l}{x-1>-{x}^{2}+x}\\{-2<x-1<2}\\{-2<-{x}^{2}+x<2}\end{array}\right.$
解得1<x<2,
故選:A.

點(diǎn)評 本題主要考查了函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,以及函數(shù)的單調(diào)性和奇偶性,同時考查了計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.cos12°sin72°-sin12°cos72°=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的離心率為$\sqrt{2}$,則雙曲線的兩漸近線的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交E于A,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則橢圓E的離心率為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=alnx-$\frac{x}$,g(x)=-3x+4.
(1)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線為2x-y-3=0,求a,b的值;
(2)若b=-1,當(dāng)x≥1時,f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證:對于一切正整數(shù)n,恒有$\frac{2}{4×{1}^{2}-1}$+$\frac{3}{4×{2}^{2}-1}$+$\frac{4}{4×{3}^{2}-1}$+…+$\frac{n+1}{4×{n}^{2}-1}$>$\frac{1}{4}$ln(2n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)=x(x-1)(x-2)…(x-5),則f′(0)=-120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)y=cos(2x-$\frac{π}{6}$)的圖象向左平移$\frac{1}{4}$個周期后,所得圖象對應(yīng)的解析式( 。
A.y=cos(2x+$\frac{π}{12}$)B.y=cos(2x+$\frac{π}{3}$)C.y=cos(2x-$\frac{2π}{3}$)D.y=cos(2x-$\frac{5π}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx+ax的函數(shù)圖象在點(diǎn)(1,f(1))處的切線平行于x軸.
(1)求函數(shù)f(x)的極值;
(2)若直線y=kx+b與函數(shù)f(x)的圖象交于兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2).
證明:$\frac{1-{x}_{2}}{{x}_{2}}$<k<$\frac{1-{x}_{1}}{{x}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)2a=5b=m,且$\frac{1}{a}$+$\frac{1}$=1,則m等于( 。
A.$\sqrt{10}$B.10C.20D.100

查看答案和解析>>

同步練習(xí)冊答案