12.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+2$\overrightarrow$|=4$\sqrt{2}$,則$\overrightarrow{a}$•$\overrightarrow$的取值范圍是( 。
A.(-∞,4]B.[4,+∞)C.(-∞,2]D.[2,+∞)

分析 利用$\overrightarrow{a}$•$\overrightarrow$=$\frac{(\overrightarrow{a}+2\overrightarrow)^{2}}{8}-\frac{(\overrightarrow{a}-2\overrightarrow)^{2}}{8}$,由已知條件結(jié)合不等式求最值.

解答 解:因為平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+2$\overrightarrow$|=4$\sqrt{2}$,所以$\overrightarrow{a}$•$\overrightarrow$=$\frac{(\overrightarrow{a}+2\overrightarrow)^{2}}{8}-\frac{(\overrightarrow{a}-2\overrightarrow)^{2}}{8}$$≤\frac{(4\sqrt{2})^{2}}{8}$=4;
所以則$\overrightarrow{a}$•$\overrightarrow$的取值范圍是≤4;
故選A.

點評 本題考查平面向量的數(shù)量積的運算,考查不等式的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且2Sn=4an-1.在數(shù)列{bn}中,bn+1=bn-2,b4+b8=-16.
(Ⅰ)求an,bn
(Ⅱ)設(shè)cn=$\frac{_{n}}{{a}_{n}}$求數(shù)列{cn}的前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,sinA;sinB:sinC=2:3:4,則cosA:cosB:cosC=( 。
A.2:3:4B.14:11:(-4)C.4:3:2D.7:11:(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-a,x≤0}\\{x+\frac{a}{x},x>0}\end{array}\right.$,若f(-1)=-5,則f(2)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.把下列復(fù)數(shù)表示成代數(shù)形式.
(1)9(cosπ+isinπ);
(2)6(cos$\frac{4π}{3}$-isin$\frac{4π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$lo{g}_{\frac{1}{3}}$$\frac{ax-6}{x-2}$(a為常數(shù))在區(qū)間(3,5)上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}、{bn}滿足a1=2,2an=1+anan+1,bn=an-1,數(shù)列{bn}的前n項和為Sn,設(shè)Tn=S2n-Sn
(1)求數(shù)列{an}的通項公式;
(2)求證:Tn+1>Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}為等差數(shù)列,若a1+a9=24,則a5=( 。
A.24B.12C.6D.2$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=ax2+bx與f(x)=log${\;}_{\frac{a}}$x(ab≠0,|a|≠|(zhì)b|)在同一直角坐標(biāo)系中的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案