已知定點(diǎn)F(0,1)和直線l1:y=-1,過(guò)定點(diǎn)F與直線l1相切的動(dòng)圓的圓心為點(diǎn)C.
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)過(guò)點(diǎn)F的直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求·的最小值.
解:(1)由題設(shè)知點(diǎn)C到點(diǎn)F的距離等于它到l1的距離,
∴點(diǎn)C的軌跡是以F為焦點(diǎn),l1為準(zhǔn)線的拋物線,
∴動(dòng)點(diǎn)C的軌跡方程為x2=4y.
(2)由題意知,直線l2的方程可設(shè)為y=kx+1(k≠0),
與拋物線方程聯(lián)立消去y,得x2-4kx-4=0.
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=4k,x1x2=-4.
=4+8.
∵k2+≥2,當(dāng)且僅當(dāng)k2=1時(shí)取等號(hào),
∴≥4×2+8=16,即的最小值為16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過(guò)點(diǎn),則兩圓心的距離|C1C2|=( )
A.4 B.4
C.8 D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)動(dòng)點(diǎn)P在直線x=1上,O為坐標(biāo)原點(diǎn),以OP為直角邊、點(diǎn)O為直角頂點(diǎn)作等腰直角三角形OPQ,則動(dòng)點(diǎn)Q的軌跡是( )
A.圓 B.兩條平行直線
C.拋物線 D.雙曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知長(zhǎng)為1+的線段AB的兩個(gè)端點(diǎn)A、B分別在x軸、y軸上滑動(dòng),P是AB上一點(diǎn),且=,求點(diǎn)P的軌跡C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)F是雙曲線-=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過(guò)點(diǎn)F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),△ABE是銳角三角形,則該雙曲線的離心率e的取值范圍是( )
A.(1,+∞) B.(1,2)
C.(1,1+) D.(2,1+)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列,其前項(xiàng)和為. 經(jīng)計(jì)算得:
.
(Ⅰ)觀察上述結(jié)果,猜想計(jì)算的公式;
(Ⅱ)用數(shù)學(xué)歸納法證明所提猜想..
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com