【題目】設(shè)數(shù)列{an}的前n項和為Sn,n∈N*.已知a1=1,a2=,a3=,且當(dāng)n≥2時,4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
(2)證明:為等比數(shù)列;
(3)求數(shù)列{an}的通項公式.
【答案】見解析
【解析】(1)解:當(dāng)n=2時,4S4+5S2=8S3+S1,
即4(a1+a2+a3+a4)+5(a1+a2)=8(a1+a2+a3)+a1,
整理得a4=,
又a2=,a3=,
所以a4=.
(2)證明:當(dāng)n≥2時,有4Sn+2+5Sn=8Sn+1+Sn-1,
即4Sn+2+4Sn+Sn=4Sn+1+4Sn+1+Sn-1,
∴4(Sn+2-Sn+1)=4(Sn+1-Sn)-(Sn-Sn-1),
即an+2=an+1-an(n≥2).
經(jīng)檢驗,當(dāng)n=1時,上式成立.
∵===為常數(shù),且a2-a1=1,
∴數(shù)列是以1為首項,為公比的等比數(shù)列.
(3)解:由(2)知,an+1-an= (n∈N*),
等式兩邊同乘2n,
得2nan+1-2n-1an=2(n∈N*).
又20a1=1,
∴數(shù)列{2n-1an}是以1為首項,2為公差的等差數(shù)列.
∴2n-1an=2n-1,
即an= (n∈N*).
則數(shù)列{an}的通項公式為an= (n∈N*).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校進行體驗,現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機抽取50人進行統(tǒng)計(已知這50個身高介于155 到195之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒有繪制完成,已知第一組與第八組人數(shù)相同,第六組和第七組人數(shù)的比為5:2.
(1)補全頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計這50位男生身高的中位數(shù);
(3)用分層抽樣的方法在身高為內(nèi)抽取一個容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集個數(shù)為4,求a的范圍;
(2)若a∈Z,當(dāng)A∩B≠時,求a的最小值,并求當(dāng)a取最小值時A∪B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率利潤保費收入)的頻率分布直方圖如圖所示:
(1)試估計這款保險產(chǎn)品的收益率的平均值;
(2)設(shè)每份保單的保費在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量為(萬份).從歷史銷售記錄中抽樣得到如下5組與的對應(yīng)數(shù)據(jù):
元 | 25 | 30 | 38 | 45 | 52 |
銷量為(萬份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知與有較強的線性相關(guān)關(guān)系,且據(jù)此計算出的回歸方程為.
(ⅰ)求參數(shù)的值;
(ⅱ)若把回歸方程當(dāng)作與的線性關(guān)系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問每份保單的保費定為多少元時此產(chǎn)品可獲得最大利潤,并求出最大利潤.注:保險產(chǎn)品的保費收入每份保單的保費銷量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的底面是邊長為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長是, 是的中點.
(1)求證: 平面;
(2)求二面角的大;
(3)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,,得到下表2:
時間代號 | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 | 5 |
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)通過(Ⅰ)中的方程,求出關(guān)于的回歸方程;
(Ⅲ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達多少?
(附:對于線性回歸方程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(A)∩B=,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com