下列函數(shù)中,最小值為2的是( 。
A、y=x+
1
x
B、y=
x2+4
x2+3
C、y=
x
+
4
x
-2
D、y=(x2+1)2+2
考點:基本不等式
專題:
分析:利用基本不等式的性質(zhì)即可判斷出.
解答: 解:A.x<0,最小值不可能是2;
B.y=
x2+4
x2+3
=
x2+3
+
1
x2+3
>2,最小值不可能是2;
C.y=
x
+
4
x
-2≥2
x
4
x
-2=2,當且僅當x=4時取等號.
D.y=(x2+1)2+2≥1+2=3,最小值為3.
故選:C.
點評:本題考查了基本不等式的性質(zhì),使用時注意“一正二定三相等”的法則,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

“直線x=2kπ(k∈Z)”是“函數(shù)f(x)=2sin(x+
π
2
)圖象的對稱軸”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
|x|
x+2

(Ⅰ)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(Ⅱ)若函數(shù)g(x)=f(x)-kx2(k∈R)有四個不同的零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a=1,b=
3
,∠A=
π
6
,則∠B等于( 。
A、
π
3
B、
π
3
3
C、
π
6
6
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經(jīng)過點P(2,-1),則
sinα-cosα
sinα+cosα
=( 。
A、3
B、
1
3
C、-
1
3
D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的函數(shù),且對任意x,y∈R,均有f(x+y)=f(x)+f(y)+2014成立,若函數(shù)g(x)=f(x)+2014x2013有最大值M和最小值m,則M+m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1≠0,an+1=
3
an,Sn為{an}的前n項和.記Rn=
82Sn-S2n
an+1
,則數(shù)列{Rn}的最大項為第
 
項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方形四個頂點為O(0,0),A(
2
,0),B(
2
,2
2
),C(0,2
2
),若冪函數(shù)y=f(x)圖象經(jīng)過點B,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax+b
x2+1
(x∈R,a、b為實數(shù)),且曲線y=f(x)在點P(
1
3
,f(
1
3
))
處的切線l的方程是9x+10y-33=0.
(1)求實數(shù)a,b的值;
(2)現(xiàn)將切線方程改寫為y=
3
10
(11-3x),并記g(x)=
3
10
(11-3x),當x∈[0,2]時,試比較f(x)與g(x)的大小關(guān)系;
(3)已知數(shù)列{an}滿足:0<an<2(n∈N*),且a1+a2+…+a2014=
2014
3
,若不等式f(a1)+f(a2)+…+f(a2014)≤x-ln(x-p)+2(p-2)在x∈(p,+∞)時恒成立,求實數(shù)f(x)的最小值.

查看答案和解析>>

同步練習冊答案