在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,已知tanA+tanc=
5
4
(1-tanAtanC).
(1)求sinB的值;
(2)若△ABC的面積為4,求BA•BC的值.
考點:正弦定理,兩角和與差的正切函數(shù)
專題:計算題,三角函數(shù)的求值,解三角形
分析:(1)由兩角和的正切公式和同角的平方關(guān)系和商數(shù)關(guān)系,即可求得sinB;
(2)由三角形的面積公式S=
1
2
acsinB,計算即可得到.
解答: 解:(1)tanA+tanc=
5
4
(1-tanAtanC),
則tan(A+C)=
tanA+tanC
1-tanAtanC
=
5
4
,即有tanB=-
5
4
,
即有
sinB
cosB
=-
5
4
,sin2B+cos2B=1,
解得,sinB=
5
41
41
;
(2)由于△ABC的面積為4,
則4=
1
2
acsinB=
1
2
×
5
41
41
ac,
即有ac=
8
41
5

則BA•BC=
8
41
5
點評:本題考查兩角和的正切公式和同角公式的運用,考查三角形的面積公式的運用,考查運算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)y=Asin(ωx+φ),A>0,ω>0,x∈R,|φ|<
π
2
,最高點D的坐標為(
π
8
,2),由最高點D運動到相鄰最低點時,函數(shù)曲線與x軸的交點為(
8
,0).
(1)求A、ω和φ的值.
(2)求函數(shù)y分別取得最大值和最小值時的自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
2+cos2-sin21
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:(2
1
4
 
1
2
-(-9.6)0-(3
3
8
 
1
3
+0.1-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA=AC=3,PB=PD=3
2
,點E在PD上,且PE:ED=2:1.
(1)證明:PA⊥平面ABCD;
(2)求二面角A-CE-D的余弦值;
(3)在棱PC上是否存在一點F,使得BF∥平面AEC?如果存在,指出F的位置,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinx+2cosx=-
5
,則tanx=( 。
A、
1
2
B、2
C、-
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(3sinθ,2cosθ)在直線y=-2x上,求
1-2sin2θ
2
cosθ
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2mcos2
x
2
)+sinx的導(dǎo)函數(shù)的最大值等于
5
,則實數(shù)m的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點是F1(-2,0),且b2=3a2
(1)求雙曲線C的方程;
(2)設(shè)經(jīng)過雙曲線右焦點的直線l的斜率為-m,當直線l與雙曲線C的右支相交于不同的兩點A、B時,求實數(shù)m的取值范圍,并證明AB的中點M在曲線(x-1)2-
y2
3
=1上.

查看答案和解析>>

同步練習冊答案