10.f(x)=$\frac{1}{\sqrt{1-lo{g}_{2}x}}$的定義域為(0,2).

分析 由分母中根式內(nèi)部的代數(shù)式大于0,然后求解對數(shù)不等式得答案.

解答 解:由1-log2x>0,得log2x<1,解得0<x<2.
∴f(x)=$\frac{1}{\sqrt{1-lo{g}_{2}x}}$的定義域為(0,2).
故答案為:(0,2).

點評 本題考查函數(shù)的定義域及其求法,考查了對數(shù)不等式的解法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知在△ABC中,AB=4,AC=6,BC=$\sqrt{7}$,其外接圓的圓心為O,則$\overrightarrow{AO}•\overrightarrow{AB}$=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)y=acosx+b(a>0)的最大值是3,最小值是-1.
(1)求實數(shù)a,b的值;
(2)求函數(shù)f(x)=bsin(ax+$\frac{π}{3}$)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如果函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期是π,那么f(π)=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.下列函數(shù)在(0,+∞)上是減函數(shù)的有(2)(4)
(1)y=2x+1;(2)y=$\frac{2}{x}$;(3)y=-x2+2x;(4)y=-x2-x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.(1)有20個零件,其中16個一等品,4個二等品,若從這20個零件中任意取3個,那么至少有1個一等品的不同取法有多少種?(用兩種不同的方法求解)
(2)用1、2、3、4這4個數(shù)字組成無重復數(shù)字的四位數(shù),其中恰有1個偶數(shù)字夾在兩個奇數(shù)字之間的四位數(shù)的個數(shù)有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若△ABC的周長為5+$\sqrt{7}$,面積為$\frac{3\sqrt{3}}{2}$,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知n∈N*,k∈N*,k≤n.求證:
(1)(k+1)C${\;}_{n+1}^{k+1}$=(n+1)C${\;}_{n}^{k}$;
(2)C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{{2}^{n+1}-1}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.給出一個如圖所示的程序框圖,若要使輸出的y值是輸入的x值的2倍,則這樣的x值是-1.

查看答案和解析>>

同步練習冊答案