18.如果函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期是π,那么f(π)=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 直接利用三角函數(shù)的周期公式求解即可.

解答 解:函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期是π,
可得:$\frac{2π}{ω}=π$,∴ω=2,
f(x)=sin(2x+$\frac{π}{3}$),
那么f(π)=sin(2π+$\frac{π}{3}$)=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,
故選:C.

點(diǎn)評(píng) 本題考查三角函數(shù)的解析式的求法,函數(shù)的周期的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線l的方程為4ρcosθ-ρsinθ-25=0,曲線W:$\left\{\begin{array}{l}{x=2t}\\{y={t}^{2}-1}\end{array}\right.$(t是參數(shù)).
(1)求直線l的直角坐標(biāo)方程與曲線W的普通方程;
(2)若點(diǎn)P在直線l上,Q在曲線W上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.根據(jù)給出的數(shù)塔猜測(cè)123456×9+7=( 。
1×9+2=11
12×9+3=111
123×9+4=1 111
1 234×9+5=11 111
12 345×9+6=111 111
A.1 111 110B.1 111 111C.1 111 112D.1 111 113

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知α,β為銳角,且sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,則tan(α-β)=-$\frac{\sqrt{7}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.甲、乙兩人同時(shí)應(yīng)聘一個(gè)工作崗位,若甲、乙被應(yīng)聘的概率分別為0.5和0.6,兩人被聘用是相互獨(dú)立的,則甲、乙兩人中最多有一人被聘用的概率為0.7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx-1.
(1)求f(x)的單調(diào)增區(qū)間
(2)用“五點(diǎn)法”在給定的坐標(biāo)系中作出y=f(x)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.f(x)=$\frac{1}{\sqrt{1-lo{g}_{2}x}}$的定義域?yàn)椋?,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知定義在R上的偶函數(shù)f(x)滿足f(x+4)=f(x),且當(dāng)0≤x≤2時(shí),f(x)=min{-x2+2x,2-x},若方程f(x)-mx=0恰有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-$\frac{1}{3}}$)∪(${\frac{1}{3}$,+∞)B.(-∞,-$\frac{1}{3}}$]∪[${\frac{1}{3}$,+∞)C.(-2,-$\frac{1}{3}}$]∪[${\frac{1}{3},2}$)D.[-2,-$\frac{1}{3}}$]∪[${\frac{1}{3}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列計(jì)算S的值的選項(xiàng)中,不能設(shè)計(jì)算法求解的是(  )
A.S=1+2+3+…+10000000B.S=1+2+3+4
C.S=1+2+3+…+n(n≥2且n∈N)D.S=12+22+32+…+1002

查看答案和解析>>

同步練習(xí)冊(cè)答案