10.在數(shù)列{an}中,a1=1,an+1=an+2,Sn為{an}的前n項和,若Sn=100,則n等于(  )
A.7B.8C.9D.10

分析 由已知可得數(shù)列{an}是首項為1,公差為2的等差數(shù)列,求出其前n項和后得答案.

解答 解:由a1=1,an+1=an+2,得數(shù)列{an}是首項為1,公差為2的等差數(shù)列,
則${S}_{n}=n{a}_{1}+\frac{n(n-1)d}{2}=n+\frac{2n(n-1)}{2}={n}^{2}$,
由Sn=100,得n=10.
故選:D.

點評 本題考查數(shù)列求和,考查了等差數(shù)列的前n項和,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知a=${∫}_{0}^{π}$sinxdx,若從[0,10]中任取一個數(shù)x,則使|x-1|≤a的概率為$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項和為Sn,a1=0,4Sn=1-an+1,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)記bn=(-1)nlog3a2n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.有一個可同時進出水的容器,每單位時間內(nèi)的水量是一定的,設(shè)從某時刻開始10min內(nèi)只進水不出水,在隨后的30min內(nèi)既進水又出水,得到時間x(min)與水量y(L)之間的關(guān)系如圖所示.若40min后只放水不進水,求y與x的函數(shù)關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在求函數(shù)y=x2+$\frac{1}{{x}^{2}+a}(a>0)$的最小值時,某同學(xué)的做法如下:由基本不等式得y=x2+$\frac{1}{{x}^{2}+a}={x}^{2}+a+\frac{1}{{x}^{2}+a}-a≥2\sqrt{({x}^{2}+a)\frac{1}{{x}^{2}+a}}$-a=2-a.
因此函數(shù)y=x2+$\frac{1}{{x}^{2}+a}$的最小值為2-a.
若該同學(xué)的解法正確,則a的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合M={1,2,3,…,n,n+1}(n≥2,n∈N),M1,M2,M3,…,MS(k)是M的k+1元子集(k∈N,k≤n)
(1)若n=9,k=1,且滿足Mi(i∈{1,2,…,S(k)}中各元素之和是3的倍數(shù),求S(k)的值;
(2)若滿足M(i∈{1,2,…,S(k)}中必含有元素3,
①求S(k)的表達式;
②設(shè)bk=(-1)k+1$\frac{k+1}{n-k}$S(k+1),Tm=b0+b1+b2+…+bm(m∈N*,m≤n-1),求|$\frac{{T}_{m}}{{C}_{n-1}^{m}}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某公司對新研發(fā)的一種產(chǎn)品進行合理定價,且銷量與單價具有相關(guān)關(guān)系,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(單位:元)88.28.48.68.89
銷量y(單位:萬件)908483807568
(1)現(xiàn)有三條y對x的回歸直線方程:$\stackrel{∧}{y}$=-10x+170; $\stackrel{∧}{y}$=-20x+250; $\stackrel{∧}{y}$=-15x+210;根據(jù)所學(xué)的統(tǒng)計學(xué)知識,選擇一條合理的回歸直線,并說明理由.
(2)預(yù)計在今后的銷售中,銷量與單價服從(1)中選出的回歸直線方程,且該產(chǎn)品的成本是每件5元,為使公司獲得最大利潤,該產(chǎn)品的單價應(yīng)定多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.關(guān)于θ 的函數(shù)f(θ)=cos2θ-2xcosθ-1的最大值記為M(x),則M(x)的解析式為$\left\{\begin{array}{l}{2x}&{x≥0}\\{-2x}&{x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\frac{2}{a+i}$=1-i,其中i為虛數(shù)單位,a∈R,則a=1.

查看答案和解析>>

同步練習(xí)冊答案