20.已知實(shí)數(shù)x,y滿足(x+2)2+y2=1,則2x-y的最大值為$\sqrt{5}$-4.

分析 令x+2=cosθ,y=sinθ,則2x-y=2cosθ-sinθ-4=$\sqrt{5}$cos(θ+φ)-4,進(jìn)而得到答案.

解答 解:∵(x+2)2+y2=1,
則可令x+2=cosθ,y=sinθ,
∴2x-y=2(cosθ-2)-sinθ=2cosθ-sinθ-4=$\sqrt{5}$cos(θ+φ)-4,
故2x-y的最大值為$\sqrt{5}$-4,
故答案為:$\sqrt{5}$-4.

點(diǎn)評 本題考查的知識點(diǎn)是三角函數(shù)的最大值,轉(zhuǎn)化思想,圓的參數(shù)方程,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)y=f(x)(x∈R)是偶函數(shù),且f(1)<f(3),則f(-3)與f(-1)的大小關(guān)系為f(-3)>f(-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求證:
(1)cosα•cosβ=$\frac{1}{2}$[sin(α+β)-sin(α-β)];
(2)cosα•cosβ=$\frac{1}{2}$[cos(α+β)+cos(α-β)];
(3)sinα•sinβ=-$\frac{1}{2}$[cos(α+β)-cos(α-β)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{{9}^{x}-4•{3}^{x}+3+a}{{3}^{x}-1}$,x∈(0,1],其中a為常數(shù).
(1)若y=f(x)是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)f(x)的最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某橢圓左焦點(diǎn)為F(-$\sqrt{3}$,0),點(diǎn)A(1,$\frac{\sqrt{3}}{2}$)在橢圓上,則求該橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}$+y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè){an}是公比為整數(shù)的等比數(shù)列,a1=2,a2=a1+4.
(1)求{an}的通項(xiàng)公式;
(2)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={2,3,4},集合B={1,2,3,5,6}.
(1)求集合A∩B
(2)寫出集合A∩B的所有子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.不等式(x+1)(x2-4x+3)>0有多種解法,其中有一種方法如下,在同一直角坐標(biāo)系中作出y1=x+1和y2=x2-4x+3的圖象然后進(jìn)行求解,請類比求解以下問題:
設(shè)a,b∈Z,若對任意x≤0,都有(ax+2)(x2+2b)≤0,則a+b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=lnx+$\frac{m}{x}$,m∈R
(1)當(dāng)m=e(e為自然對數(shù)的底數(shù))時(shí),求f(x)的最小值;
(2)記g(x)=f′(x)-$\frac{x}{3}$+m,試討論是否存在x0∈(0,$\sqrt{3}$)∪($\sqrt{3}$,+∞),使得g(x0)=f(1)成立.

查看答案和解析>>

同步練習(xí)冊答案