分析 (1)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(2)利用對數(shù)的運算性質、“裂項求和”、數(shù)列的單調性即可得出.
解答 解:(1)∵5S1、2S2、S3成等差數(shù)列,
∴4S2=5S1+S3,即4(a1+a1q)=5a1+${a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}$,
∴q2-3q+2=0,
∵q≠1,∴q=2.
又∵a4=16,即${a}_{1}{q}^{3}$=8a1=16,a1=2.
∴an=2n.
(2)解:bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
數(shù)列{bn}的前n項和Tn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$,
顯然Tn關于正整數(shù)n是單調遞增的,
∴Tmin=T1=$\frac{1}{2}$.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式、對數(shù)的運算性質、“裂項求和”、數(shù)列的單調性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(\frac{1}{x})'=-\frac{1}{x^2}$ | B. | (x2cosx+2)′=-x2sinx+2xcosx | ||
C. | $(\frac{e^x}{x})'=\frac{{{e^x}x+{e^x}}}{x^2}$ | D. | $(x{log_a}x)'={log_a}x+\frac{1}{lna}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | B. | $\frac{1}{2}$+$\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
t(時) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com