【題目】坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,又在直角坐標系中,曲線的參數(shù)方程為(t為參數(shù)).
(1)求曲線的直角坐標方程和曲線的普通方程;
(2)已知點在曲線上,點Q在曲線上,若的最小值為,求此時點的直角坐標.
【答案】(1),;(2).
【解析】
(1)利用將曲線的極坐標方程轉(zhuǎn)化為直角坐標方程;消除曲線的參數(shù)方程為(t為參數(shù))中的參數(shù)即可得到曲線的普通方程;
(2)利用橢圓的參數(shù)方程設(shè)P的坐標,根據(jù)點到直線距離求得的最小值列等式即可解得.
(1)由得
即
把代入得
,
故曲線的直角坐標方程為
∵曲線的參數(shù)方程為(為參數(shù)),
的普通方程為;
(2)由題意,曲線的參數(shù)方程為(為參數(shù))
可設(shè)點的直角坐標為
∵曲線是直線,
的值大于等于點到直線的距離,
點到直線的距離
∴當,的最小值為,
即,
此時,點的直角坐標為
科目:高中數(shù)學 來源: 題型:
【題目】在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:
(1)證明:平面平面
(2)求平面與平面所成二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).
(Ⅰ)求的分布列;
(Ⅱ)若要求,確定的最小值;
(Ⅲ)以購買易損零件所需費用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,過點作傾斜角為的直線,以原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,將曲線上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線,直線與曲線交于不同的兩點.
(1)求直線的參數(shù)方程和曲線的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖在直角中,為直角,,,分別為,的中點,將沿折起,使點到達點的位置,連接,,為的中點.
(Ⅰ)證明:面;
(Ⅱ)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在梯形ABCD中,AB//CD,AB=3,CD=6,過A,B分別作CD的垂線,垂足分別為E,F,已知DE=1,AE=3,將梯形ABCD沿AE,BF同側(cè)折起,使得平面ADE⊥平面ABFE,平面ADE∥平面BCF,得到圖2.
(1)證明:BE//平面ACD;
(2)求三棱錐C﹣AED的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自2016年1月1日全面實施二孩政策以來,為了了解生二孩意愿與年齡段是否有關(guān),某市選取“75后”和“80后”兩個年齡段的已婚婦女作為調(diào)查對象,進行了問卷調(diào)查,共調(diào)查了40名“80后”,40名“75后”,其中調(diào)查的“80后”有10名不愿意生二孩,其余的全部愿意生二孩;調(diào)查的“75后”有5人不愿意生二孩,其余的全部愿意生二孩.
(1)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表;
年齡段 | 不愿意 | 愿意 | 合計 |
“80后” | |||
“75后” | |||
合計 |
(2)根據(jù)列聯(lián)表,能否在犯錯誤的概率不超過0.05的前提下,認為“生二孩意愿與年齡段有關(guān)”?請說明理由.
參考公式:(其中)
附表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:
(1)證明:平面平面ABC;
(2)若點M在棱PA上運動,當直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com