【題目】201611日全面實施二孩政策以來,為了了解生二孩意愿與年齡段是否有關(guān),某市選取“75“80兩個年齡段的已婚婦女作為調(diào)查對象,進(jìn)行了問卷調(diào)查,共調(diào)查了40“8040“75,其中調(diào)查的“8010名不愿意生二孩,其余的全部愿意生二孩;調(diào)查的“755人不愿意生二孩,其余的全部愿意生二孩.

1)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表;

年齡段

不愿意

愿意

合計

“80

“75

合計

2)根據(jù)列聯(lián)表,能否在犯錯誤的概率不超過005的前提下,認(rèn)為生二孩意愿與年齡段有關(guān)?請說明理由.

參考公式:(其中

附表:

050

040

025

015

010

005

0025

0010

0005

0001

0455

0708

1323

2072

2706

3841

5024

6635

7879

10828

【答案】1)列聯(lián)表見解析;(2)不能,理由見解析

【解析】

1)根據(jù)所給的數(shù)據(jù)直接填寫列聯(lián)表即可;

2)根據(jù)公式計算出的值進(jìn)行判斷即可.

1)完成的列聯(lián)表如下表:

年齡段

不愿意

愿意

合計

80后”

10

30

40

75后”

5

35

40

合計

15

65

80

2)根據(jù)列聯(lián)表計算,

對照觀測值得,不能在犯錯誤的概率不超過005的前提下認(rèn)為“愿不愿意生二孩”與年齡段有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C 經(jīng)過點,設(shè)橢圓C的左頂點為A,右焦點為F,右準(zhǔn)線于x軸交于點M,且F為線段AM的中點,

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若過點A的直線l與橢圓C交于另一點PPx軸上方),直線PF與橢圓C相交于另一點Q,且直線lOQ垂直,求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,又在直角坐標(biāo)系中,曲線的參數(shù)方程為t為參數(shù)).

1)求曲線的直角坐標(biāo)方程和曲線的普通方程;

2)已知點在曲線上,點Q在曲線上,若的最小值為,求此時點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為等差數(shù)列的前項和,且

1)求數(shù)列的通項公式;

2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的中線與中位線相交于,已知旋轉(zhuǎn)過程中的一個圖形,下列命題中,正確的是(

A.動點在平面上的射影在線段

B.恒有平面平面

C.三棱錐的體積有最大值

D.旋轉(zhuǎn)過程中二面角的平面角始終為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究一種昆蟲的產(chǎn)卵數(shù)和溫度是否有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并作出了如圖的散點圖.

溫度/

20

22

24

26

28

30

32

產(chǎn)卵數(shù)/

6

10

22

26

64

118

310

26

794

358

112

116

2340

3572

其中

1)根據(jù)散點圖判斷,哪一個更適宜作為該昆蟲的產(chǎn)卵數(shù)與溫度的回歸方程類型?(給出判斷即可,不必說明理由).

2)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;(保留兩位有效數(shù)字)

3)根據(jù)關(guān)于的回歸方程,估計溫度為33℃時的產(chǎn)卵數(shù).

(參考數(shù)據(jù):

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 平面, , , 分別為, 的中點.

(1)求證: 平面;

(2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù),為函數(shù)的導(dǎo)函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)與函數(shù)存在相同的零點,求實數(shù)a的值;

3)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

同步練習(xí)冊答案