2.在銳角△ABC中,$\overrightarrow{CM}$=3$\overrightarrow{MB}$,$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則$\frac{x}{y}$=3.

分析 根據(jù)題意畫出圖形,結(jié)合圖形,利用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示出$\overrightarrow{AM}$,求出x、y的值即可.

解答 解:如圖所示,
銳角△ABC中,$\overrightarrow{CM}$=3$\overrightarrow{MB}$,
∴$\overrightarrow{MB}$=$\frac{1}{4}$$\overrightarrow{CB}$=$\frac{1}{4}$($\overrightarrow{AB}$-$\overrightarrow{AC}$),
∴$\overrightarrow{AM}$=$\overrightarrow{AB}$+$\overrightarrow{BM}$=$\overrightarrow{AB}$-$\overrightarrow{MB}$=$\overrightarrow{AB}$-$\frac{1}{4}$($\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$;
又$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,
∴x=$\frac{3}{4}$,y=$\frac{1}{4}$,
∴$\frac{x}{y}$=3.
故答案為:3.

點評 本題考查了平面向量的線性表示與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)對任意x∈R都有f(x+2)+f(x-2)=2f(2),若y=f(x+1)的圖象關(guān)于點(-1,0)對稱,且f(1)=2,則f(2009)=(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=ex-ax,a是常數(shù).
(Ⅰ)若a=1,且曲線y=f(x)的切線l經(jīng)過坐標原點(0,0),求該切線的方程;
(Ⅱ)討論f(x)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在四棱錐P-ABCD中,$∠DBA=\frac{π}{2}$,$AB\underline{\underline∥}CD$,△PAB和△PBD都是邊長為2的等邊三角形,設(shè)P在底面ABCD的射影為O.
(1)求證:O是AD中點;
(2)證明:BC⊥PB;
(3)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示的多面體是由一個直平行六面體被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.兩個單位向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$⊥$\overrightarrow$,且$\overrightarrow{a}$⊥(x$\overrightarrow{a}$+$\overrightarrow$),則|2$\overrightarrow{a}$-(x+1)$\overrightarrow$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,三棱柱ABC-A1B1C1中,AC=AA1=2,AB=BC=2$\sqrt{2}$,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1與A1C相交于點D.
(1)求證:BC1⊥平面AA1C1C;
(2)求二面角C1-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在三棱錐P-ABC中,已知PC⊥平面ABC,點C在平面PBA內(nèi)的射影D在直線PB上.
(1)求證:AB⊥平面PBC;
(2)設(shè)AB=BC,直線PA與平面ABC所成的角為45°,求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某班主任準備請2016屆畢業(yè)生做報告,要從甲、乙等8人中選4人發(fā)言,要求甲、乙兩人至少一人參加,若甲乙同時參加,則他們發(fā)言中間需恰隔一人,那么不同的發(fā)言順序共有1080種.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案