4.設(shè)f(x)=3x,g(x)=($\frac{1}{3}$)x
(1)在同一坐標(biāo)系中作出f(x),g(x)的圖象.
(2)計(jì)算f(1)與g(-1),f(π)與g(-π),f(m)與g(-m)的值,從中你能得到什么結(jié)論?

分析 (1)結(jié)合指數(shù)函數(shù)的圖象,利用描點(diǎn)法作f(x),g(x)的圖象.
(2)可求得f(1)=3,g(-1)=3;f(π)=3π,g(-π)=3π;f(m)=3m,g(-m)=3m;從而可判斷f(x)=g(-x).

解答 解:(1)作f(x),g(x)的圖象如下,

(2)f(1)=3,g(-1)=3;
f(π)=3π,g(-π)=3π;
f(m)=3m,g(-m)=3m;
故f(x)=g(-x);
即f(x)與g(x)的圖象關(guān)于y軸對(duì)稱.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的圖象的作法及由圖象發(fā)現(xiàn)函數(shù)的性質(zhì)的方法應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知m≥1,n≥1,且滿足$lo{{g}_{a}}^{2}$m+$lo{{g}_{a}}^{2}$n=loga(am2)+loga(an2)(a>1),求loga(mn)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+Sn=$\frac{1}{2}$(n2+3n),數(shù)列{bn}滿足bn=$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,M為正整數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}的前2015項(xiàng)的和T2015≥M,求M的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知三個(gè)數(shù)a-1,a+1,a+5成等比數(shù)列,其倒數(shù)重新排列后恰好為遞增的等比數(shù)列{an}的前三項(xiàng),則能使不等式a1+a2+…+an≤$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$成立的自然數(shù)n的最大值為(  )
A.5B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知sin(π+α)=-$\frac{3}{5}$,求$\frac{sin(3π+α)tan(2π+α)cos(5π+α)}{tan(π+α)tan(3π+α)sin(2π+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合A={x∈N|$\frac{x-2}{x}$≤0},B={x∈Z|$\sqrt{x}$≤2},則滿足條件A⊆C?B的集合C的個(gè)數(shù)為( 。
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計(jì)算($lg\frac{1}{5}-lg2$)÷100${\;}^{-\frac{1}{2}}$+${({\frac{1}{3}})^{{{log}_3}\frac{1}{10}}}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\frac{1}{\sqrt{a{x}^{2}+3ax+1}}$的定義域是R,則實(shí)數(shù)a的取值范圍是( 。
A.$({0,\frac{4}{9}})$B.$[{0,\frac{4}{9}}]$C.$[{0,\frac{4}{9}})$D.$({0,\frac{4}{9}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖直三棱柱ABC-A′B′C′的側(cè)棱長(zhǎng)為3,AB⊥BC,且AB=BC=3,點(diǎn)E,F(xiàn)分別是棱AB,BC上的動(dòng)點(diǎn),且AE=BF.
(1)求證:無論E在何處,總有CB′⊥C′E;
(2)當(dāng)三棱錐B-EB′F的體積取得最大值時(shí),求AE的長(zhǎng)度.
(3)在(2)的條件下,求異面直線A′F與AC所成角.

查看答案和解析>>

同步練習(xí)冊(cè)答案