分析 (1)根據(jù)待定系數(shù)法求出a的值即可;(2)求出g(x)的表達(dá)式,根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)得到關(guān)于x的范圍即可.
解答 解:(1)∵函數(shù)f(x)=logax(a>0且a≠1)的圖象過(guò)($\frac{1}{4}$,2)點(diǎn),
∴${log}_{a}^{\frac{1}{4}}$=2,即a2=$\frac{1}{4}$,
又a>0且a≠1,∴a=$\frac{1}{2}$;
(2)由(1)得f(x)=${log}_{\frac{1}{2}}^{x}$,又g(x)=f(3-x)-f(3+x),
∴g(x)=${log}_{\frac{1}{2}}^{\frac{3-x}{3+x}}$,
要使此函數(shù)有意義,有$\left\{\begin{array}{l}{3-x>0}\\{3+x>0}\end{array}\right.$,
解得:-3<x<3,
∴函數(shù)的定義域是{x|-3<x<3}.
點(diǎn)評(píng) 本題考查了待定系數(shù)法求函數(shù)的表達(dá)式,考查對(duì)數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 60° | C. | 30°或150° | D. | 60°或 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x-2y-1=0 | B. | x-2y+1=0 | C. | 2x+y-2=0 | D. | x+2y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{OP}$=$\overrightarrow{OA}$+2$\overrightarrow{OB}$-2$\overrightarrow{OC}$ | B. | $\overrightarrow{OP}$=-2$\overrightarrow{OA}$-$\overrightarrow{OB}$+3$\overrightarrow{OC}$ | C. | $\overrightarrow{OP}$=2$\overrightarrow{OA}$+$\overrightarrow{OB}$-3$\overrightarrow{OC}$ | D. | $\overrightarrow{OP}$=2$\overrightarrow{OA}$+$\overrightarrow{OB}$-2$\overrightarrow{OC}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com