【題目】七巧板是古代中國勞動人民發(fā)明的一種中國傳統(tǒng)智力玩具,它由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成.清陸以湉《冷廬雜識》卷一中寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.體物肖形,隨手變幻,蓋游戲之具,足以排悶破寂,故世俗皆喜為之.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為( )
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)當時,若函數(shù)在區(qū)間上存在唯一零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△AnBnCn的三邊長分別為an , bn , cn , △AnBnCn的面積為Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an , , ,則( )
A.{Sn}為遞減數(shù)列
B.{Sn}為遞增數(shù)列
C.{S2n﹣1}為遞增數(shù)列,{S2n}為遞減數(shù)列
D.{S2n﹣1}為遞減數(shù)列,{S2n}為遞增數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),曲線在點處的切線方程為.
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設函數(shù),且在區(qū)間內(nèi)為單調(diào)遞增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢驗設備M與設備N的生產(chǎn)效率,研究人員作出統(tǒng)計,得到如下表所示的結果,則
設備M | 設備N | |
生產(chǎn)出的合格產(chǎn)品 | 48 | 43 |
生產(chǎn)出的不合格產(chǎn)品 | 2 | 7 |
附:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式:,其中.
A. 有90%的把握認為生產(chǎn)的產(chǎn)品質(zhì)量與設備的選擇有關
B. 沒有90%的把握認為生產(chǎn)的產(chǎn)品質(zhì)量與設備的選擇有關
C. 可以在犯錯誤的概率不超過0.01的前提下認為生產(chǎn)的產(chǎn)品質(zhì)量與設備的選擇有關
D. 不能在犯錯誤的概率不超過0.1的前提下認為生產(chǎn)的產(chǎn)品質(zhì)量與設備的選擇有關
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+(e﹣a)x﹣b,其中e為自然對數(shù)的底數(shù).若不等式f(x)≤0恒成立,則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需另投入2.7萬元.設該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤W(萬元)關于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入﹣年總成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列對任意滿足,下面給出關于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com