分析 由向量的中點表示形式,結(jié)合向量的數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,計算即可得到所求值.
解答 解:D是BC的中點,可得
$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos∠A
=4•3•cos60°=6,
則有$\overrightarrow{AD}$2=$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)2
=$\frac{1}{4}$(|$\overrightarrow{AB}$|2+|$\overrightarrow{AC}$|2+2$\overrightarrow{AB}$•$\overrightarrow{AC}$),
=$\frac{1}{4}$(42+32+2•6)=$\frac{37}{4}$,
即有|$\overrightarrow{AD}$|=$\frac{\sqrt{37}}{2}$.
故答案為:$\frac{\sqrt{37}}{2}$.
點評 本題考查向量的中點表示形式,考查向量的數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [3,+∞) | B. | (-∞,3] | C. | (-∞,4] | D. | [4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x>2,x∈N} | B. | {x|x≤2,x∈N} | C. | {0,2} | D. | {1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com