分析 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性求得函數(shù)y的最大值.
解答 解:∵函數(shù)y=sinx-$\frac{1}{2}$cosx(x∈[0,$\frac{π}{2}$]),故函數(shù)的導(dǎo)數(shù)y′=cosx+$\frac{1}{2}$sinx>0,
故函數(shù)y在[0,$\frac{π}{2}$]上單調(diào)遞增,故當(dāng)x=$\frac{π}{2}$時(shí),函數(shù)y取得最大值為1,
故答案為:1.
點(diǎn)評 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求三角函數(shù)的最值,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{3}}{8}$ | B. | 2 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{3\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{56}{65}$ | B. | -$\frac{56}{65}$ | C. | -$\frac{16}{65}$ | D. | $\frac{56}{65}$或-$\frac{16}{65}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com